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Abstract Human activity recognition aims to determine actions performed by a human in an

image or video. Examples of human activity include standing, running, sitting, sleeping, etc.

These activities may involve intricate motion patterns and undesired events such as falling. This

paper proposes a novel deep convolutional long short-term memory (ConvLSTM) network for

skeletal-based activity recognition and fall detection. The proposed ConvLSTM network is a

sequential fusion of convolutional neural networks (CNNs), long short-term memory (LSTM)

networks, and fully connected layers. The acquisition system applies human detection and pose

estimation to pre-calculate skeleton coordinates from the image/video sequence. The ConvL-

STM model uses the raw skeleton coordinates along with their characteristic geometrical and

kinematic features to construct the novel guided features. The geometrical and kinematic features

are built upon raw skeleton coordinates using relative joint position values, differences between

joints, spherical joint angles between selected joints, and their angular velocities. The novel spa-

tiotemporal guided features are obtained using a trained multi-player CNN-LSTM combination.

Classification head including fully connected layers is subsequently applied. The proposed model

has been evaluated on the KinectHAR dataset having 130,000 samples with 81 attribute val-

Santosh Kumar Yadav
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India,
CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan-333031, India, and
DeepBlink LLC, 30 N Gould St Ste R, Sheridan, WY 82801, United States
E-mail: santosh.yadav@pilani.bits-pilani.ac.in

Shaik Ali Akbar
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India, and
CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan-333031, India
E-mail: saakbar@ceeri.res.in

Kamlesh Tiwari
Department of CSIS, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
E-mail: kamlesh.tiwari@pilani.bits-pilani.ac.in

Hari Mohan Pandey
Department of Computer Science, Edge Hill University, Lancashire, United Kingdom
E-mail: Pandeyh@edgehill.ac.uk



2 Santosh Kumar Yadav et al.

ues, collected with the help of a Kinect (v2) sensor. Experimental results are compared against

the performance of isolated CNNs and LSTM networks. Proposed ConvLSTM have achieved an

accuracy of 98.89% that is better than CNNs and LSTMs having an accuracy of 93.89% and

92.75%, respectively. The proposed system has been tested in realtime and is found to be inde-

pendent of the pose, facing of the camera, individuals, clothing, etc. The code and dataset will

be made publicly available.

Keywords Activity Recognition · CNNs · LSTMs · ConvLTM · Skeleton Tracking

1 Introduction

The basic aim of human activity recognition systems is to automatically recognize the activities

of an individual with the raw data obtained from sensors. The application of activity detection

can be found in many areas like human-computer interaction, video surveillance, sports analysis,

video understanding, etc. [24,34,19]. Monitoring fall detection and early reporting is also an

important application of human activity recognition. The world population is expected to have

a 25% increase in the elder population by 2050, it is necessary to assist elderly adults over the

age of 65 [6]. Fall is a major cause of an accident and even death, especially in the case of the

elderly. An estimated $31 billion is spent on direct medical costs for fall injuries in the US [27],

making fall prevention and early reporting necessary.

The classical studies typically studied action recognition using monocular RGB videos [42]

which makes it hard to comprehensively represent actions in 3D space. In recent years, for

human activity recognition, low-cost and high mobility sensors, like Microsoft Kinect are being

widely adopted. Kinect’s ability to track skeleton joints has attracted significant attention from

computer vision researchers, and different algorithms have been proposed using the skeleton joint

information for recognizing human activities. Skeleton joints extracted from the Kinect can be

used to calculate features invariant to the human body size, appearance, and change in camera

viewpoints [39].

There have been some works on activity recognition in the past, where a combination of con-

volutional neural networks (CNNs) and long short-term memory (LSTM) networks are utilized

for activity recognition [11,33,12]. Many works involved running different models in parallel like

an ensemble classifier and fused the scores of each model to predict the final class labels. For

example, Li et al. [17] used the score fusion of CNN and LSTM models. Although this method

improves upon using either CNN or recurrent neural networks (RNNs) individually, it does not

utilize the advantages of both models. As done by [17], a lot of previous works on activity recog-

nition involves feeding the skeleton data directly into the model and it is up to the neural network

to extract features from those coordinates.

Only skeletal features are not enough for recognizing all the activities. There are a few ac-

tivities like falling, differentiating between running and walking, etc., which require the rate of

change of coordinates of the center of mass, velocity, acceleration, and other derived features
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like head to floor distance and the joint angles between the joint points for recognition. Such

features cannot be modeled by CNN and LSTM techniques directly, and they require hand en-

gineering. Also, using only the hand-engineered features results in a model which is shallow and

dataset-dependent [32].

In this paper, a set of derived features along with the raw skeleton joint coordinates are fed to

the deep learning networks as shown in Fig. 2. Initially, we applied skeletal tracking algorithms

using a Kinect (v2) sensor and collected 3D joints locations for each frame, and made a skeletal

of bones. A set of features have been extracted from the raw data obtained from the Kinect

(v2) sensor for improving the model efficiency. The standard features like velocity, acceleration,

position of the center of gravity, angle between different body joints, etc., have been derived from

the raw body coordinates. After extracting the features, the dataset is preprocessed and inputted

to the deep learning models, which consist of fourteen derived features along with seventeen

skeleton coordinates. The proposed ConvLSTM model is a sequential combination of CNNs,

LSTM, and dense layers, where CNN is used for feature filtering, LSTM is used for classification,

and dense layers are used for feature mapping (as shown in Fig. 2). LSTM cells can represent the

contextual dependencies in the temporal domain effectively, while the CNNs perform better to

process the feature set with more spatial information. By combining both, we retrieved the best

set of features containing spatial and temporal information. Finally, a fully connected network

is applied to these features to get the classification scores. We have experimentally found that

using the combination of CNNs and LSTMs in a serial manner results in better efficiency as

compared to using either of them individually, or using it in a parallel mode.

Major contributions of this manuscript are highlighted as follows:

1. The paper presents a privacy-preserving activity recognition and fall detection system using

the data obtained from Kinect (v2) sensor.

2. We propose a ConvLSTM model, which is a sequential combination of CNNs, LSTMs, and

dense layers. LSTM cells are used to represent the contextual dependencies in the temporal

domain, while CNNs are used for extracting the spatial features. The combination of these

gives the best set of spatiotemporal features.

3. To preserve the privacy of the user, instead of passing the raw videos directly to the network,

a set of derived features along with skeletal joint coordinates are fed to the deep learning

network. A set of fourteen derived features along with seventeen skeleton coordinates are

inputted to the networks for recognizing the activities and detecting falls.

4. A new dataset is presented for activity recognition and fall detection. This dataset has been

collected with all possible variations and has all the features and enough complexity generally

required for training a system. During experimentation, this dataset is used for testing the

performance of the proposed model to recognize the activities and detecting falls (described

in Section 4.1).

5. Experimental results show that the ConvLSTM model achieves better accuracy (98.89%) as

compared to the LSTM (92.75%) and CNNs (93.89%) individually.
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The outline of this paper is organized as follows. Section 2 presents the literature survey.

Section 3 describes the proposed methodology along with feature extraction, CNNs, LSTM,

and ConvLSTM models. Section 4 describes the experimental results and the data collection

procedure, and also, it compares the performances of CNNs, LSTM, and ConvLSTM models.

Section 5 presents the concluding remarks and proposes future directions.

2 Related Works

Various literature has been proposed for activity recognition and fall detection using single or

multiple cameras. Multi-view cameras were found to improve accuracy [2], but they lead to higher

complexity and duplicate cost [25]. Low-cost depth sensors like Kinect are recently investigated

to deal with the above limitations. These approaches used low-resolution depth information from

Kinect for joint localization to detect falls. Many literatures have proposed fall detection systems

using Kinect depth sensors such as Gasparrini et al. [9] placed Kinect sensor on the ceiling and

used depth images for fall detection while Uden et al. [28] placed Kinect sensor under the bed

for detecting fall along with other activities like leaving the room, feet in front of the bed, and

activity in the room. However, these approaches suffer in a real-time environment to give accurate

results.

Researchers have used different techniques to construct classification models for human ac-

tivity recognition, for example, Wang et al. [31] used Deep fully-connected networks (DFNs)

to facilitate a better representation of data as compared to artificial neural networks (ANNs).

Vepakomma et al. [29] took hand-engineered features obtained from the sensors for human ac-

tivity recognition. Hammerla et al. [11] used five hidden layer DFNs for feature extraction.

Generally, DFNs with more number of hidden layers serve as the dense layer for other deep

learning algorithms. A few researchers have also used autoencoders, a variety of ANNs used for

unsupervised learning, for activity recognition. The aim of an autoencoder is to memorize the

dataset representation, typically for dimensionality reduction. Almaslukh et al. [1] and Wang et

al. [30] utilized greedy approaches in which each layer was pre-trained and then fine-tuned. In

comparison to this, Li et al. [20] have utilized the sparse autoencoders by adding the Kullback

Leibler (KL) divergence and introducing noises to the cost function, which ultimately improved

the performance for activity recognition. Stacked Autoencoders (SAEs) are used for learning

the features in an unsupervised manner, which may be used to enhance the feature extraction

for HAR. However, SAEs depend upon the number of layers and their activation functions that

makes them hard to search for the optimal solution.

Deep learning based action recognition can be categorized into two broad categories, i.e. CNN

based approaches [7,17,14,35] and RNN based approaches [8,43,21,16,41]. CNNs have obtained

promising results in the image/video classification, signal processing, etc. It performs better

for processing the feature set with more spatial information [36]. CNNs comprise one or many

convolutional layers. Once the convolution operation completes, pooling and the fully connected
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Fig. 1: Sequence learning using, (1) LSTM, (2) RNN [40].

layers are combined to perform the classification at the final output [15]. Ding et al. [7] had

investigated different skeletal features using CNNs for the 3D action recognition. They encoded

the spatial skeleton features into images by incorporating various encoding techniques. Also, they

studied the performance implications of the different skeleton joints in the features extraction. Li

et al. [17] proposed two-stream CNNs in which one stream was applied on raw joint coordinates

whereas the other one was used for the motion data from the subtraction of joint coordinates from

subsequent frames. Ke et al. [14] converted the skeletal features into images and passed it to deep

CNNs. Weng et al. [35] utilized Naive-Bayes mutual information maximization (NBMIM) [38] to

CNNs for the action recognition. For the sequential information, RNNs are best suited. They are

widely applied in various fields like speech recognition and natural language processing [40,18,

10]. Activity recognition can also be considered a sequential problem. Du et al. [8] have presented

a skeleton-based activity recognition system using an end-to-end deep learning model consisting

of hierarchical RNNs. In their methodology, they have divided the human skeleton obtained from

the Kinect sensor into five different parts. These parts are then fed to five different bidirectional

RNNs. Among various RNN architectures, LSTMs are most popular due to their memory capacity

and remembering useful data for an extended period (Fig. 1). For activity recognition, LSTMs are

very robust with real-world recognition [13]. Zhu et al. [43] proposed an approach to automatically

learn the human skeletal representations. They used RNNs and LSTMs to learn the long-term

temporal dependency in the dataset. To model the joint co-occurrences with the LSTMs and

RNNs, joint position values were used as the input for each time slot. Liu et al. [21] proposed a

new gated scheme in LSTM for sequential action recognition. Lee et al. [16] proposed a temporal

sliding LSTM, which includes short, medium, and long-term units. Zhang et al. [41] presented

an element-wise attention gate using RNN’s for action recognition.

The combination of CNNs and LSTMs is among the most emerging hybrid models for activity

recognition. These are especially being applied to vision tasks involving sequential inputs and

outputs. CNNs basically consists of two modules. First, feature map construction or extraction,
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Table 1: Summary of the literature review.

Author Sensing-Modality Learning Method Dataset Classes Subjects

Gasparrini et al. [9], 2014
RGB-D Camera
(Kinect)

Ad-Hoc Segmenta-
tion

Self-collected for Fall detection 2 NA

Jiang Wang et al. [32], 2013
RGB-D Cameras
(Kinect Sensors)

Actionlet Ensem-
bles

MSR-Action3D dataset, DailyAc-
tivity3D dataset, Multiview 3D
Event, Cornell Activity Dataset,
and CMU MoCap Dataset

20, 16,
8, 4, 5

10,
NA, 8,
16, 5,
NA

Vepakomma et al. [29], 2015
Wearable Inertial
Sensors

Multilayer Feed
Forward Neural
Network

Self-collected 22 2

Hammerla et al. [11], 2016
Wearable Inertial
Sensors

Bidirectional
LSTMs

Opportunity, PAMAP2, DaphNet
Gate Detection

-,12,- -,9,10

Ding et al. [7], 2017
RGB-D Camera
(Kinect Sensor)

CNNs NTU RGB+D 60 40

Li et al. [17], 2017
RGB-D Cameras
(Kinect Sensors)

CNN + LSTM NTU RGB+D 60 40

Ke et al. [14], 2017
RGB-D Camera
(Kinect)

CNNs
SBU Kinect Interaction Datset,
CMU Dataset, and NTU RGB+D

8, 45,
60

-, -, 40

Du et al. [8], 2015

RGB-D Cameras
(Kinect Sensors)
and other wearable
sensors

Hierarchical RNNs
MSR Action3D dataset, Berkeley
MHAD, Motion Capture Dataset
HDM05

20, 11,
130

10, 12,
5

Liu et al. [21], 2017
RGB-D Cameras
(Kinect Sensors)
and Other Sensors

Spatiotemporal
LSTMs

NTU RGB+D, UT-Kiect Dataset,
SBU Interaction Dataset, SYSU-
3D dataset, ChaLearn Gesture
Dataset Names, MSR Activity 3D
dataset, and Berekeley MHAD

60, 10,
8, 12,
20, 20,
11

40, -,
-, 40,
27, 10,
12

Lee et al. [16], 2017
Many RGB-D
Cameras (Kinect
Sensors)

Temporal Sliding
LSTMs

MSR-Action 3D, UT-Kinect Ac-
tion, NTU RGB+D, Northwest-
ern UCLA, UWA3DII-datasets

20, 10,
60, 10,
30

10, 10,
40, 10,
10

Zhang et al. [41], 2018
RGB-D Cameras
(Kinect Sensors)

Element-wise
Attention using
LSTMs

NTU RGB+D, Northwestern
UCLA, SYSU Human Object
Interaction, JHMDB datasets

60, 10,
12, 21

40, 10,
40, -

Ordonez et al. [22], 2016
Wearable Inertial
Sensors

CNN + LSTM Opportunity and Skoda Datasets 17, 10 20, -

Singh et al. [26], 2017
Wearable Inertial
Sensors

CNN + LSTM Self-collected 1 13

and second, a basic classifier. The hybrid model of CNN and LSTM uses CNN for feature ex-

traction, and LSTM for feature classification. Ordonez et al. [22], Yao et al. [37] and Singh et

al. [26], used a combination of CNNs and LSTMs, and demonstrated a tremendous improvement

in result. They run both CNN and LSTM models in parallel and used score fusion for the final

prediction. Table 1 presents a summary of the literature survey. Work in this research demon-

strates a sequential ConvLSTM approach using the best features of both CNN and LSTM. We

have focused on combining the CNNs, LSTMs, and dense layers in a sequential manner and take

advantage of all three methods.

3 Proposed Methodology

The proposed methodology of this paper is threefold. First, the human body frames are acquired

from the Kinect-v2 sensor and tracked the 3D skeleton joint coordinates. Then a 3D joints nor-

malization technique is applied for the preprocessing of the data. The 3D coordinates are used

to make a 3D bounding box over the tracked human. Suitable features like velocity, acceleration,

angle between skeleton joints, height, width etc. have been extracted for identifying different

activities. For each activity, important features have been selected and then constructed fea-

ture vectors. Second, the dataset is stored in a CSV format consisting of the raw skeleton joint

coordinates and the extracted features. Third, the dataset containing joint values along with

extracted manual features are inputted to deep learning networks i.e. CNNs, LSTMs, and Con-
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Fig. 2: The proposed model of ConvLSTM. From the raw input videos 3D skeleton coordinates
are extracted which are passed to calculate the geometrical and kinematic features. The ex-
tracted features along with raw skeleton joint coordinates are passed to CNNs for extracting
the automated spatial features. These spatial features are then passed to LSTMs for extracting
the temporal features. Finally, fully connected layers are applied to classify the activities and
calculated the Softmax scores.

vLSTM for the activity recognition and fall detection. Fig. 2 illustrates the proposed model of

the ConvLSTM, which is a sequential fusion of CNNs and LSTMs.

3.1 Preprocessing

This subsection presents the preprocessing methods applied to the raw data obtained from the

Kinect (v2) sensor. We applied skeleton joint estimation methods to acquire the body frames

and applied 3D joints tracking methods. Fig. 3 presents the twenty-five skeleton joints tracked

at each instance. These skeletal joints include knee right, hip right, knee left, hip left, foot left,

ankle left, foot right, ankle right, head, spine mid, wrist left, shoulder right, shoulder left, wrist

right, elbow right, and elbow left. All these joint values contain X,Y, Z coordinates in the space.

As Chen et al. [4] stated, not all the skeletal joints are useful but only some of the skeletal

joints are informative for a particular activity, in our case we excluded coordinates like hand tip,

thumb, neck, etc., which are not very important for recognizing the intended activities. Once

the 3D skeletal coordinates are available, we applied 3D joints normalization techniques to make

3D bounding boxes across the tracked human skeleton. The bounding box varies as the person

moves in the video. Fig. 4 presents the block diagram of the proposed automatic dataset labeling

procedure. Table 2 describes the list of skeletal joints tracked, set of derived features, and activity

class labels. The normalization technique used for stabilizing the convergence of the loss functions
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Fig. 3: The 25 skeleton joints tracked using Kinect (v2) sensor.

in the proposed work is min-max normalization. Suppose, if X represents the training dataset

then:

X =
X −Xmin

Xmax −Xmin
(1)

3.2 Geometric and Kinematic Features Calculation

The 3D human skeleton joint coordinates are used for evaluating different features and construct-

ing the feature vectors. Feature vectors are used for deciding which joints of the body parts to

be tracked for different activities. Only discriminative features are utilized for each activity.

Angle Between Skeleton Joints: The 3D coordinates of different body joints are connected

using a line and drawn a skeleton. Here, only 10 joints, namely shoulder left, shoulder center,

shoulder right, spine base, knee left, hip right, ankle left, hip left, ankle right, and knee right, are

utilized for calculating the angle values. These are most relevant among the twenty-five skeleton

joints to recognize the activities. A set of angle values are calculated using these joint coordinates.
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Fig. 4: The block diagram of the proposed data collection procedure. The input video streams
from the Kinect-v2 sensor are used to acquire the 3D skeleton joint coordinates. Then a 3D
joint normalization technique is used for the normalization. A bounding box is made across the
practitioner using the upper and lower body joint coordinates. Suitable features such as the
angle between joints, velocity, acceleration, height, width, etc. are calculated and stored in the
dataset along with their activity labels. This dataset is later passed to deep learning algorithms
for training the network.

Fig. 5 presents an example of calculating the joint angles between the left side of the ankle, knee,

and hip. The average of the difference of hip to knee values and ankle to knee values are used

for calculating the angle values. If P, Q, R represents the distance before coordinate values as

P1 = x1 − y1, Q1 = x2 − y2, and R1 = x3 − y3, then the angle between skeleton joints are:

θ =
PQR

(PQ ∗QR)
(2)
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Table 2: Feature Set Specifications.

Sr. Label Description

1 Skeleton joints Hip Right, Foot Left, Knee Right, Knee Left, Hip Left, Foot Right,

from Kinect (v2) Ankle Right, Ankle Left, Head, Spine Mid, Spine Base, Wrist Left,

Shoulder Right, Shoulder Left, Elbow Left, Wrist Right, Elbow Right

2 Derived Features Velocity in X,Y, Z directions, Distance from the floor, Angle Left Standing,

Acceleration in X,Y, Z directions, Height, Angle Standing, Angle Sitting Left,

Angle Sitting Right, Angle Standing Right, Width

3 Class Labels Bending, Fall, Lying Down, Sitting, Standing, Walking Fast, Walking Slow

Knee Left (x2, y2, z2)

Hip Left (x1, y1, z1)

Ankle Left (x3, y3, z3)

θ

Fig. 5: An example of the angle calculation from the right side between the ankle, knee, and hip.

where, PQR = P1∗P2+Q1∗Q2+R1∗R2; PQ =
√
P 2

1 +Q2
1 +R2

1 ; and QR =
√
P 2

2 +Q2
2 +R2

2

Angle =
cos−1(θ) ∗ 180

pi
(3)

Velocity Estimation: Velocities in the X,Y, Z directions are estimated using the differences

between the positions of the human skeleton at the time instance of t and t+1. The displacement

between the two consecutive frames is calculated using the spine mid joint coordinate of the

person. Next, the displacement per unit time is used to calculate the velocity of the person.

V elocity =
Displacement of the tracked person between frames

T ime
(4)

Acceleration Estimation: Acceleration in the X,Y, Z directions are estimated using the

changes in the velocity between consecutive frames as follows:

Acceleration =
V elocity of the tracked person between frames

T ime
(5)
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Distance from Floor: This is used to estimate the distance between the floor and joint coor-

dinate of the head of the tracked person.

Depth Estimation: Depth is the distance from the camera to the nearest object. It was esti-

mated with the help of the head joint’s Z coordinate of the tracked person.

Width Estimation: The difference between maximum right joint and maximum left joint co-

ordinates are used to calculate the depth. The extreme right joint values are calculated using the

elbow right, hip right, knee right, shoulder right, hand-tip right, ankle left, foot right, and head

joint values. A similar procedure is used to find the left extreme joints using all the left side joint

coordinates.

Width = abs(Max. Right Joint−Max. Left Joint) (6)

Height Estimation: The difference between extreme top joints and extreme bottom joints is

used to calculate the height. The extreme bottom is calculated using the ankle left, knee right,

ankle right, knee left, foot right, ankle left, foot left, and ankle right joint coordinates. Extreme

top calculated using the head, hand tip left, hand tip right, ankle right, elbow right, ankle left,

elbow left, knee right, and knee left joints values.

Height = abs(Top Joint−Bottom Joint) (7)

3.3 Classification Models

In this section, the final dataset along with derived features are inputted to the deep learning net-

work for classification. Three different classification methods have been used for the classification

namely CNN, LSTM, and the newly designed ConvLSTMs.

Convolutional Neural Network Architecture: Firstly, the activity recognition has been im-

plemented using the CNNs [23]. Let X0
t = [X1, X2, . . . , Xn] be the readings from the sensor data

as an input vector. Here, n is the number of input samples. The convolutional layer’s output can

be given as:

Cl,j
i = σ(Bj +

M∑
m=1

W j
m ∗X0,j

i+m−1) (8)

where, l correspond to index of layer, and σ is a sigmoid activation function. Bj is a bias

corresponding to the jth feature, and M is the filter size. W j
m represents the weight for the jth

feature map and mth filter index.

Three input channels are used for the RGB dataset as the input layers. In the convolution

layer, six filters are passed along with setting the kernel sizes, padding, and ReLU activation
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functions. Max-pooling is used as a pooling layer, which down-samples the image data and

reduces the dimensionality for reducing the processing time. The output of which has been

passed to the fully connected layers. Ultimately, the Softmax scores give the probabilities of the

classes. As far as the negative log-likelihood cost function is considered, it is minimized using a

stochastic gradient descent optimizer.

Long Short-Term Memory Architecture: Secondly, we have implemented activity recogni-

tion using LSTM, an improved version of RNN, which avoids the vanishing gradient problem

and consists of memory cells. LSTMs mainly consist of gates such as forget, input, and output

gates to control and protect the cell states [3]. Forget gate is a binary gate used to decide how

much information to let through. The input gate layer is used to decide the new information that

needs to be stored in the cell state. The output gate consists of a sigmoid gate, which decides

what parts of the cell to give as output. Passing the cell state through the tanh layer, and mul-

tiplying it with the output obtained from the sigmoid gate provides the final output (Fig. 1).

The standard equations describing the actions of each gate can be given as follows:

it = σ (W(Xi) Xt +W(Hi) H(t−1) +W(Ci) C(t−1) +Bi) (9)

ft = σ (W(Xf) Xt +W(Hf) H(t−1) +W(Cf) C(t−1) +Bf ) (10)

ot = σ (W(Xo) Xt +W(Ho) H(t−1) +W(Co) Ct +Bo) (11)

Ct = ft C(t−1) + it tanh (W(Xc) Xt +W(Hc) H(t−1) +Bc) (12)

Ht = ot tanh (Ct) (13)

where, Wi,Wf ,Wo are the weight matrices, and Xt is an input to the LSTM cells at the time

instance t. σ is the Sigmoid activation function, whereas tanh is a hyperbolic tangent activation

function. f, i, and o are the forget, input and output gates, respectively. C represent the state of

a memory cell. Bi, Bc, Bf , and Bo are the bias vectors.

A different combination of batch sizes, hidden layers, and learning rates has been investigated.

The best results were obtained using 32 hidden layers for 7 classes with a learning rate of 0.0025,

lambda loss amount of 0.0015, and batch size of 1500. Two LSTM cells were stacked which adds

deepness to the network. For loss computation, the Softmax loss function was used and optimized

using Adam optimizer.

ConvLSTM Architecture: In this, a ConvLSTM network has been proposed using the fusion

of CNNs, LSTM, and dense layers. Here, CNNs are used for spatial feature extraction, LSTMs

are used for sequence prediction, and dense layers are used for mapping the features to get more

separable space (Fig. 2). Fig. 6 demonstrates a traditional activity recognition model, where the
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Fig. 6: Demonstrates a parallel ConvLSTM model with score fusion.

Fig. 7: Demonstrates a sequential ConvLSTM mode.

parallel fusion of CNN and LSTM has been performed for the ConvLSTM model. This has been

used in many works, previously [11,33,12]. Although this approach is much better than using

either only CNN or only LSTM, yet it does not use the efficiency of both the models to their

fullest.

In this, a sequential fusion of CNN, LSTM, and dense layers is used as shown in Fig. 7. Here,

the outputs of the last hidden layer of CNNs are inputted to the LSTM layers followed by the

fully connected layers for the classification. The equations of ConvLSTM can be given as follows:

Ft = σ (W(XF ) ∗ Xt +W(HF ) ∗ H(t−1) +BF ) (14)

It = σ (W(XI) ∗ Xt +W(HI) ∗ H(t−1) +BI) (15)

Čt = tanh (W(XČ) ∗ Xt +W(HČ) ∗ H(t−1) +BČ) (16)
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Ot = σ (W(XO) ∗ Xt +W(HO) ∗ H(t−1) +BO) (17)

Ct = Ft � C(t−1) + It � Čt (18)

Ht = Ot � tanh (Ct) (19)

where, σ (sigmoid) and tanh (hyperbolic − tangent) are non-linear activation functions. �
represents the Hadamard product, and ∗ represents the convolution operations. The inputs (Xt),

cells (Ct), hidden states (Ht), forget gates (Ft), input gates (It), input-modulation gates (Čt),

and output gates (Ot) are all M ×N ×F (rows, columns, feature maps) dimensional 3D tensors.

The memory cell Ct is the most crucial module, acting as an aggregator of the state information

controlled by the gates.

Initially, the helper functions are defined to increase the reusability and readability of the code.

The hyper-parameters like the size, number of layers, steps, batch sizes, and learning rate (0.0001)

have been set to an optimum value. Next, we have constructed the LSTM cells and reshaped the

dataset for LSTM into sequence length, batches, and channels. Then we applied ReLU activa-

tion and set dropout regularization, which operates simultaneously on gates, cells, and output

responses of LSTM neurons. Finally, the logit functions are used for cost function measurement.

Further, we used Adam optimizer for cost function optimization and utilized gradient clipping.

For the training of the network, we set the checkpoint path, saver function, initialized session,

set iterations, computed loss and accuracy on the validation dataset, and saved the checkpoint

for further testing the model. The performance is tremendously improved by using a sequential

model (Fig. 7) as compared to score fusion (Fig. 6). The experimental results and comparisons of

three different models i.e. CNNs, LSTMs, and ConvLSTM for activity recognition are presented

in the next sections.

4 Experimental Result

This section presents the dataset building procedure, and experimental results using the deep

learning algorithms i.e. CNNs, LSTMs, and ConvLSTM. The proposed model has been tested

on a newly collected KinectHAR dataset recorded by the Kinect-v2 sensor. Only skeleton joints

coordinates along with suitable features are stored for inputting to the deep learning model.
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4.1 Dataset Building

With the development of cost-effective RGB-D sensing technologies, now it is more convenient

to get 3D and depth data. We utilized Microsoft Kinect (v2) sensor for the data collection, which

is a depth sensor-based motion-sensing input device that offers a convenient way to record and

capture human skeleton joints. The name of Kinect is a combination of kinetic and connects [4]. It

produces three-dimensional RGB-D data. Kinect runs at 30 fps and has a resolution of 640×480p

for both i.e. video and depth [5]. Kinect (v2) has a sensing range of 4 meters [5].

For the dataset collection, 20 different people (12 males and 8 females) have participated

and performed seven different activities which include sitting, standing, bending, walking fast,

walking slow, lying, and fall activities. Every person performed each activity for more than two

minutes with all possible variations, so that it can identify activities accurately in a real-time

environment. As we do not record the videos, only the skeleton coordinates are used, the privacy

is preserved. Throughout the experiment, Kinect (v2) sensor was placed at a two-meter height

above the ground. All the experiments have been performed at a range of 0.5 meters to 4.0 meters

in front of the camera. The final dataset contains a total of 130,000 samples with 81 attribute

values. The source codes and dataset will be made publicly available to the research community.

4.2 Model Evaluation

This section describes the experimental results obtained using three different deep learning al-

gorithms, namely CNN, LSTM, and ConvLSTM. In the ConvLSTM, CNN is used for feature

filtering, LSTM is used for the sequential classification, and fully connected layers are used for

feature mapping, as illustrated in Fig. 2. LSTM cells represent the contextual dependencies in

the temporal domain effectively, while the CNNs perform better to process spatial features. The

combination of these gets the best set of spatial features from CNNs and long-term temporal

dependency from LSTMs.

The dataset has been split into train and validation sets with a ratio of 60:20, while the

remaining 20% is left for the testing. The training data has been used for training the classifiers,

while the validation dataset has been used for measuring the performance and accuracy of the

trained model. Model loss is obtained using categorical cross-entropy, due to its suitability for

measuring the performance of the final layer with Softmax activation. All three models were

trained for 200 epochs on a machine that has NVidia TITAN-X GPU. The performance of the

system has been measured based on the different measures, which include precision, recall, F1-

score, and accuracy. If we represent TN as true negatives, TP as true positives, FN as false

negatives, and FP as false positives, then the performance metrics can represent as follows:

Recall =
TP

TP + FN
(20)
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(a) Model accuracy curve (b) Model loss curve

Fig. 8: Model accuracy and loss curves using LSTMs.

(a) Model accuracy curve (b) Model loss curve

Fig. 9: Model accuracy and loss curves using CNNs.

Precision =
TP

TP + FP
(21)

F1 − Score = 2 × Precision×Recall

Precision+Recall
(22)
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(a) Model accuracy curve (b) Model loss curve

Fig. 10: Model accuracy and loss curves using ConvLSTM.

Table 3: Precision, recall, and F1-score using LSTM, CNNs, and ConvLSTM.

Sr. No. Algorithm Performance Metrics Score Percentage

1 LSTM Precision 91.09%

Recall 90.83%

F1-Score 90.55%

2 CNN Precision 92.71%

Recall 92.49%

F1-Score 92.01%

3 ConvLSTM Precision 97.89%

Recall 97.83%

F1-Score 97.75%

Accuracy =
TP + TN

TP + FP + FN + TN
(23)

Table 3 presents the precision, recall, and F1-score values for different algorithms performed

with ±1 percentage change. We have applied different machine learning and deep learning al-

gorithms such as SVMs, decision trees (DT), random forest (RF), artificial neural networks

(ANNs), CNNs, LSTMs, and ConvLSTMs. The comparison of their accuracies is shown in Ta-

ble 4. All the accuracies and plots are calculated for 200 epochs. The accuracy and loss curves

using LSTM, CNN, and ConvLSTM are shown in Fig. 8, Fig. 9, and Fig. 10 respectively. Pro-
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Table 4: Comparison of accuracies using different algorithms.

Sr. No. Algorithm Model Accuracy

1 SVM 70.21%

2 DT 74.80%

3 RF 76.48%

4 ANN 78.59%

5 LSTM 92.75%

6 CNN 93.89%

7 ConvLSTM 98.85%

Table 5: Activity-wise precision, recall, and F1-score using the ConvLSTM.

Sr. No. Activity Precision Recall F1-Score

1 Standing 96% 100% 98%

2 Walking Slow 92% 96% 94%

3 Walking Fast 99% 95% 97%

4 Sitting 100% 100% 100%

5 Bending 96% 100% 98%

6 Fall 83% 100% 91%

7 Lying Down 100% 98% 99%

Fig. 11: Realtime testing of the standing, sitting, bending, walking slow, and walk-
ing fast activities(working model is presented to demonstrate realtime testing as
https://www.youtube.com/watch?v=2PqkyXMVBLg.

posed ConvLSTM results in a better accuracy compared to LSTM and CNNs, as illustrated in

Table 4. The accuracy of ConvLSTM is approximately 5-6% better compared to either LSTM

or CNN individually. Table 5 presents the precision, recall, and F1-score of each class obtained

using the ConvLSTM model. As we can see from the Table 3 and Table 4, ConvLSTM gives

the best results in comparison to other algorithms, so we have stored the trained model using

ConvLSTMs and tested the model in real-time. Fig. 11 presents the activity recognition results

obtained in realtime. The performance is sufficiently high for the general adoption of the system.



Skeleton based Human Activity Recognition using ConvLSTM and Guided Feature Learning 19

5 Conclusion

This paper presented a privacy-preserving activity recognition and fall detection system us-

ing a single Kinect (v2) sensor and ConvLSTM. The proposed system derives geometrical and

kinematic features and passes them along with the raw skeleton coordinates into deep learning

networks. As the system uses only derived features along with raw skeleton joint coordinates and

does not use the actual images of the user, the privacy of the user is protected. We proposed a

simple and effective method based on the sequential fusion of CNNs and LSTM, named as ConvL-

STM model. The performance of the deep learning-based classification algorithms, namely CNN,

LSTM, and ConvLSTM, has been compared on the novel dataset consisting of 130,000 samples

along with 81 attribute values. The proposed system recognizes standing, walking slow, walking

fast, sitting, bending, fall, and lying down activities. The proposed system is unobtrusive to the

users and independent of the camera orientation, clothing, etc. The system gives sufficiently high

performance for activity recognition and fall detection for the general adoption of the system.

The source code and presented dataset will be made publicly available.
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