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Abstract 

Aims: To investigate the hierarchical contributions of anthropometry, strength and cognition 

to a battery of prescriptive and reactive agility tests. 

Methods: Nineteen participants (mean ± S.D.; age: 22.1 ± 1.9 years; height: 182.9 ± 5.5 cm; 

body mass: 77 ± 4.9 kg) completed four agility tests: a prescriptive linear sprint, a 

prescriptive change-of-direction sprint, a reactive change-of-direction sprint, and a reactive 

linear deceleration test. Anthropometric variables included body fat percentage and thigh 

girth.  Strength was quantified as the peak eccentric hamstring torque at 180, 300, and 

60°·s-1.  Mean reaction time and accuracy in the Stroop word-colour test was used to assess 

perceptual and decision making factors.  

Results: There was little evidence of inter-test correlation with the strongest relationship 

observed between 10m sprint and T-test performance (r2 = 0.49, P<0.01). Anthropometric 

measures were not strong predictors of agility, accounting for a maximum 23% (P=0.12) in 

the prescriptive change-of-direction test.  Cognitive measures had a stronger correlation with 

the reactive (rather than prescriptive) agility tests, with a maximum 33% (P=0.04) of variance 

accounted for in the reactive change-of-direction test.  Eccentric hamstring strength 

accounted for 62% (P=0.01) of the variance in the prescriptive change-of-direction test.  

Hierarchical ordering of the agility tests revealed that eccentric hamstring strength was the 

primary predictor in 3 of the 4 tests, with cognitive accuracy the next most common 

predictor.   

Conclusion: There is little evidence of inter-test correlation across a battery of agility tests.  

Eccentric hamstring strength and decision making accuracy are the most common predictors 

of agility performance.   
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Introduction 

Agility has been defined as a person’s ability to change direction rapidly.1 High speed cutting 

movements are commonly associated with a high risk of injury,2 particularly when 

incorporating a rapid deceleration, and thus agility has a primary role in both performance 

enhancement and injury (p)rehabilitation.  In the sporting context, a change of direction is 

often in response to a stimulus, and agility is considered to be dependent on two primary 

components: change of direction speed, and perceptual and decision making factors.3-5  The 

myriad of factors influencing agility is reflected in the number and diversity of tests claiming 

to measure agility.  The relationship between linear speed and change of direction speed 

has received considerable attention, with authors typically reporting weak inter-test 

relationships, 6-12 reflecting their differing physical and cognitive demands.        

Research has advocated combining the physical and psychological components of agility,6 

but to date the physical strand of the Universal agility model3 has received greater attention.    

Leg strength qualities have received the greatest attention, 4,5,13,14 highlighting the functional 

role of eccentric hamstring strength in enhancing the neuromuscular control of the contact 

phase to enhance agility.6 Anthropometric variables have received less consideration, and 

where sport-specific test batteries have revealed better agility performance in individuals 

with lower body fat, this was not directly quantified.3  In a rare multi-factorial investigation of 

the determinants of agility, body fat percentage and lower limb muscular performance 

variables were shown to account for ~45% of the variance in the predictive T-test and 5m 

shuttle run test,15 which arguably include no cognitive demands.   

The range of components influencing agility performance lends itself to a hierarchical 

ordering of factors.  The aim of the present study is to consider both the physical and 

cognitive factors.  The cognitive demands of agility have been afforded little attention, with 

many agility tests failing to present a reactive stimulus and involving only pre-planned, 

prescriptive movements.  Anticipatory cues have been shown to distinguish between elite 



and non-elite performers,16 where the complexity of the stimulus will inevitably influence the 

information-processing demands of the task, and subsequently the response time.17  

The myriad of factors influencing agility increases the complexity of test selection for the 

practitioner.  In the present study it is hypothesised that inter-test correlations will be weak 

across a battery of agility tests, based on the multi-factorial nature of agility and the differing 

mechanical and cognitive demands of each test. Furthermore, it is likely that the hierarchical 

ordering of factors influencing agility are likely to be task-specific.  In the present study the 

physical and cognitive profiling was designed to align to elements of the universal agility 

model,3 including anthropometry, isokinetic dynamometry, and cognitive processing.  In 

developing a hierarchical model of physical and cognitive factors for each agility test, it is 

hypothesised that cognitive elements will better predict reactive performance.  Given the 

functional role of the hamstring musculature18 it is hypothesised that eccentric hamstring 

strength will be the most common predictor of performance across the agility battery.  A 

greater understanding of the factors influencing performance would enable the optimum 

design of functional (p)rehabilitation strategies.   

 

Materials and Methods 

Participants 

Nineteen male, university-level intermittent team sports players (mean ± S.D.; age: 22.1 ± 

1.9 years; height: 182.9 ± 5.5 cm; body mass: 77 ± 4.9 kg) completed the study  Players 

were required to be injury free for three months preceding data collection, and provided 

written informed consent in partial fulfilment of gaining approval from departmental and 

faculty ethics committees.  All testing was conducted between 14:00 – 16:00 hours in accord 

with regular competitive demands of these players, and to negate the influence of circadian 

effects on performance.  Regular participation in intermittent team sports was set as an 



inclusion criteria for the sample population such that all participants were familiar with the 

functional challenge posed by the test battery.   

Agility testing battery 

The agility test battery was designed to include both prescriptive and reactive tasks, linear 

and multi-directional speed, acceleration and deceleration.  The testing battery comprised; a 

T-test, a 10m linear sprint, a reactive change of direction cutting task, and a reactive 

deceleration task. All agility tests were completed using commercially available photoelectric 

timing gates (Smartspeed, Fusion Sport, Australia), with participants instructed to complete 

each task to the best of their ability, requiring a maximal effort.  Figure 1 provides a 

schematic representation of each test.  Testing was preceded by a dynamic warm-up and a 

demonstration was conducted before each agility test. 

 

** Insert Figure 1 near here ** 

  

Participants were allowed a 1 metre rolling start from the first timing gate in order to replicate 

game type situations.19 The T-test and 10m sprint were designed to test prescriptive agility, 

with the T-test incorporating a change in direction.  Similarly, the cut and deceleration tasks 

were designed to test reactive agility.  The reactive cut was performed at a 45° angle, with 

the sequencing of the light stimulus at point ‘B’ random to ensure a reactive stimulus.  As the 

light flashing sequence was random each subject may have been required to run more than 

twice, but no more than four runs were conducted to avoid the cumulative influence of 

fatigue. Performance was quantified as the average of the first inversion and eversion sprint 

performed.  The reactive deceleration task utilised the 10m Sprint set-up, with the final timing 

gate replaced by a light stimulus.  A light stimulus was used to initiate a deceleration, no light 

meant the player continued to sprint through a second timing gate placed at 20m from ‘A’.  



Task performance was quantified as the distance from ‘B’ to the rearmost heel at the point 

where the player had become stationary and controlled. 

Physical and cognitive profiling 

All players completed a battery of physical and psychological profiling assessments within 2 

weeks of the agility testing.   

Anthropometric testing comprised a 7 site (biceps, triceps, subscapular, suprailiac, 

abdomen, mid-thigh, and gastrocnemius) skinfold assessment of body fat percentage.20 All 

measures were taken using a Harpenden calliper (Lange, Cambridge, MA, USA) and 

averaged over three recordings.  The mid-thigh location was also used to quantify a mid-

thigh girth measurement  

Isokinetic dynamometry (System 3, Biodex Medical Systems, Shirley, NY, USA) testing 

comprised eccentric knee flexor strength at angular velocities of 180, 300, and 60°·s-1.21   

Familiarisation trials were completed in each mode and at each speed, with data collection 

comprising 5 maximal 22 contractions at each speed.  The recovery phase between maximal 

efforts was set as passive concentric knee flexion at 10°·s-1, requiring no exertion from the 

participant.  There was an allocated 90 seconds rest between sets. Communication to each 

participant was restricted to informing them of the test speeds, no visual feedback was 

offered.  

The cognitive component of agility was considered using a version of the Stroop Word-

Colour test,23 with response inhibition tasks providing a valid representation of the cognitive 

demands of reactive agility.  The task comprised random assignment of five words (Red, 

Blue, Green, Yellow, and XXXX) presented in red, blue, green or yellow coloured font, 

resulting in a total of 20 different screens.  The player was required to identify the font colour 

as quickly as possible, by pressing the appropriate colour-coded key on a standard 

keyboard. Each trial of the Stroop task comprised 36 responses, with performance quantified 

as the mean reaction time and accuracy (percentage of correct responses).  



Statistical Analyses 

Performance to complete the 10m sprint, T-test and reactive cut were quantified as t10, tT 

and tRC respectively.  The deceleration task was scored as the stopping distance d.  Linear 

regression analysis was used to quantify the correlation coefficient between performance on 

each agility test.     

Multiple linear regression analysis was used to correlate performance on each test with each 

of the anthropometric, isokinetic strength, and cognitive profiling parameters.  The 

correlation coefficient was used to quantify the relative contribution of each factor to agility 

performance.  To develop the hierarchical ordering of the anthropometric, strength and 

cognitive factors for each agility test, a forward stepwise regression was used.  

 

Results  

Table 1 summarises the inter-test correlations for each agility test, providing the predictive 

regression equation and the correlation coefficient.  The strongest correlation was observed 

between performance of the 10m sprint and T-test (r2 = 0.49, P < 0.01), the two prescriptive 

tests.  The weakest correlations were observed between the reactive cut and the T-test (r2 = 

0.03, P = 0.48), the change of directions tests, and between the reactive cut and the 

deceleration task (r2 = 0.03, P = 0.46), the reactive tests. 

 

** Insert Table 1 near here ** 

 

Table 2 quantifies the strength of the linear correlation between agility test performance and 

each of the parameters determined from the cognitive, anthropometric, and strength 

profiling.  For each agility test, the correlation is quantified for each factor and for the 



summation of factors.  For example, for the Stroop word colour test, each agility test is 

correlated with reaction time (RT) and accuracy (%) discretely, and then in a multiple linear 

regression against RT and %.  The final row in Table 2 summarises the strength of the 

correlation when all factors from cognition, anthropometry and strength are included in a 

multiple linear regression.  The greatest single correlation was observed between eccentric 

hamstring strength at 180°·s-1 and T-test performance (r2 = 0.61, P = 0.01).  Anthropometric 

parameters were observed to have the least predictive power, the strongest correlation 

being with T-test performance (r2 = 0.23, P = 0.12).  Cognitive parameters were best able to 

account for variability in the reactive cut (r2 = 0.33, P = 0.04).  Eccentric hamstring strength 

matched this correlative strength in the deceleration task (r2 = 0.33, P = 0.10), and showed 

the greatest predictive power in the T-test (r2 = 0.62, P = 0.01). Agility performance was 

correlated against each parameter discretely, and against all parameters as a multiple linear 

regression.  With all parameters included in a multiple regression model, the correlation 

coefficient ranged from r2 = 0.39 (P = 0.47) for the 10m sprint to r2 = 0.82 (P < 0.01) for the T-

test.. 

 

** Insert Table 2 near here ** 

 

A hierarchical model of each agility test was completed using a forward stepwise regression, 

as summarised in Table 3.  The stepwise model includes additional parameters on the 

premise that the correlation coefficient is improved, and in 3 of the 4 tests only a single 

parameter was included.  Eccentric hamstring strength at 180°·s-1 was the primary predictor 

of both 10m sprint (r2 = 0.23, P = 0.24) and T-test performance (r2 = 0.61, P < 0.01), with 

peak torque at 60°·s-1 best predicting deceleration task performance (r2 = 0.32, P = 0.01).  

Cognitive accuracy was the primary predictor of reactive cut performance (r2 = 0.29, P = 

0.02), and was also observed as a secondary predictor in the T-test hierarchical model.  No 



anthropometric parameters were included in any of the agility test hierarchical models, and 

cognitive speed of response also failed to impact this analysis.  

 

** Insert Table 3 near here ** 

 

Discussion  

 

The aim of the present study was to investigate the inter-test correlations across a battery of 

tests designed to evaluate aspects of agility performance, and to evaluate the hierarchical 

ordering of both cognitive and physical factors influencing agility performance.3 Across the 

battery of agility tests there was generally weak inter-test correlation, supporting previous 

studies,6-12  and reflecting the myriad of factors which might influence performance on each 

task.  The present study used a more comprehensive testing battery than previous literature, 

incorporating both linear and directional change tasks, characterised as both prescriptive 

and reactive.  The strongest correlation (r = 0.79) was evident between the10m sprint and T-

test, whose common element is their prescriptive nature.  In contrast, the two reactive tasks 

shared a correlation accounting for only 3% of the variation, reflecting the greater complexity 

in these tasks.     

The reactive element of agility highlights the dependence on decision making, part of the 

psychological strand defined in the Universal model of agility,3 and quantified using a 

decision making task characterised by inhibition of the response.23 In all agility tests, the 

accuracy in decision making was more important than the speed of decision making.  The 

predictive strength of the accuracy in cognition was greatest in the reactive cut sprint, a task 

which is enhanced by a quick response but fundamentally requires an accurate response.  It 

is better to make an accurate decision slower, than an erroneous decision quickly as the 

necessary correction will increase the time taken to complete the task.   



The physical strand of the Universal model of agility3 was defined using anthropometric 

measures and eccentric hamstring strength.  Anthropometry was quantified as the 

percentage body fat and girth of the mid-thigh, given the functional role of the thigh 

musculature in speed and agility tasks.6,15  In all tests body fat percentage was a greater 

predictor of agility performance than thigh girth, but did not appear in the deterministic 

regression model for any test.  Body fat % contributed most to the T-test (r = 0.48) and 

deceleration (r = 0.42) tests.  This correlation is in line with, but of smaller magnitude, than 

previous studies using male soccer and basketball players.15,24  Common to both the T-test 

and deceleration test is the necessity to decelerate quickly and under control.  The negative 

linear relationship between body fat and performance therefore most likely relates to the 

greater mechanical effort in decelerating a body mass with a higher fat percentage to arrest 

momentum.   

The T-test and deceleration test were also observed to have the greatest predictive 

relationship with eccentric hamstring strength, reflecting the function of the hamstrings in 

deceleration. The combined eccentric hamstring profile was able to account for 62% and 

33% of the variance in the T-test and deceleration test respectively, the greater value in the 

T-test potentially attributable to the multiple actions performed in this test.  Peak torque at 

the mid-range speed of 180°·s-1 was the primary predictor of performance in the 10m sprint 

(r2 = 0.23) and T-test (r2 = 0.61), whereas peak torque at 60°·s-1 was the biggest contributor 

to deceleration ability (r2 = 0.32).  Previous studies considering the correlation between 

agility and isokinetic strength measures have used only the slowest testing speed of 60°·s-

1.6,15  The present study highlights the varying contribution from strength at different test 

speeds, with the slowest speed most affecting deceleration performance, and the moderate 

speed affecting those tasks emphasising acceleration.  This highlights the different functional 

demands of strength, and the necessity for a range of speeds when conducting isokinetic 

evaluations.  The test that showed no relationship with eccentric hamstring strength was the 

reactive cut, where the information processing model 17 suggests potentially insufficient time 



to generate muscle force. The greater relative contribution to predictive change of direction 

speed is in line with previous work, where eccentric hamstring strength was able to 

discriminate between the best and worst T-test performers.15  

The hierarchical modelling of factors affecting different agility tasks has practical implications 

in training and (p)rehabilitation. The common inclusion of eccentric hamstring strength as a 

predictor of performance is likely to relate to the functional role of the hamstrings in 

neuromuscular control during the ground contact phase,6 enhancing stride frequency, and 

ultimately task performance.  The anatomy of the hamstrings musculature enhances their 

functionality in both linear and directional change tasks,25 helping to maintain hip extensor 

torque, assisting dynamic trunk stabilisation, and controlling knee flexion.6  The force-

velocity relationship warrants greater consideration in conditioning, training the hamstring 

musculature at a speed with functional relevance to the task.   

The multiple linear regression model comprising all parameters from cognition, 

anthropometry and strength, was able to account for between 39-82% of the variability in 

performance.  The greater predictive capacity for the T-test perhaps reflects the greater 

functional demands of this test, requiring elements of the other tests in linear acceleration, 

deceleration, and change of direction.  The T-test therefore replicates the discrete 

performance objective of each of the other tests.  The variability in task performance not 

explained by the multi-factorial approach used in the present study ranged from 18% in the 

T-test to 61% in the 10m linear sprint.  This highlights the complexity in determining those 

factors affecting agility, and future research might further explore additional elements of the 

universal model.3  The ‘perceptual and decision-making factors’ are most likely to further 

explain variability in reactive agility, whereas the ‘change of direction speed’ pathway has 

opportunities particularly in the analysis of technique.  The nature and size of the population 

used in the present study also limits generalisation.  

 



Conclusions  

Across a battery of tests designed to emphasise different components of ‘agility’ 

performance, there was little evidence of inter-test correlation as hypothesised.  Each agility 

test produced a unique deterministic model from a selection of multi-factorial parameters.  In 

particular there was disparity between prescriptive and reactive agility tasks.  The most 

frequent predictor of agility performance was eccentric hamstring strength, particularly in 

tasks involving prescriptive change of direction, and reflective of their kinesiological function. 

Whilst observations cannot be generalised beyond the particular participant group used in 

the present study, the task-specific dependence on isokinetic test speed has implications for 

training and (p)rehabilitation strategies. 
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Legends to Figures & Tables 

Figure 1.  The agility testing battery. 

Table 1.  Inter-test correlation across the battery of agility tests. 

Table 2.  Correlation strength between each test and each predictive factor from cognition, 

anthropometry and strength. 

Table 3.  A hierarchical forward stepwise model of factors influencing each test.  

 

 

  

A

DC B
T-test

1. Sprint from A to B (9.09m)

2. Side-step from B to C (4.55m)

3. Side-step from C to D (9.09m)

4. Side-step from D to B

5. Sprint backwards from B to A
A

B

10m Sprint

1. Sprint from A to B

A

DC

BReactive cut

1. Sprint from A to B (5m)

2. Sprint from B to C or D (5m)

A

B

Deceleration

1. Sprint from A to B (10m)

2. Decelerate to a 

stationary position

 

 

Figure 1.  The agility testing battery. 



Table 1.  Inter-test correlation across the battery of agility tests. 

 

 10m Sprint 

t10 (sec) 

T-test 

tT (sec) 

Reactive Cut 

tRC (sec) 

Deceleration 

d (m) 

t10  
= 4.74 + 3.41(t10) = 1.31 + 0.78(t10) = 3.11 + 1.40(t10) 

tT r2 = 0.49 

P < 0.01 

 
= 2.15 + 0.05(tT) = 1.34 + 0.39(tT) 

tRC r2 = 0.32 

P = 0.01 

r2 = 0.03 

P = 0.48 

 
= 4.38 + 0.45(tRC) 

d r2 = 0.16 

P = 0.09 

r2 = 0.31 

P = 0.01 

r2 = 0.03 

P = 0.46 

 

 

 



Table 2.  Correlation strength between each test and each predictive factor from cognition, 

anthropometry and strength. 

 

 10m Sprint 

t10 

T-test 

tT 

Reactive Cut 

tRC 

Deceleration 

d 

Stroop word colour task, ƒ(Reaction time RT, Accuracy %) 

RT r2 = 0.02  P = 0.54 r2 = 0.04  P = 0.42 r2 = 0.01  P = 0.67 r2 = 0.01  P = 0.74 

% r2 = 0.05  P = 0.38 r2 = 0.16  P = 0.09 r2 = 0.29  P = 0.02 r2 = 0.09  P = 0.22 

RT, % r2 = 0.06  P = 0.62 r2 = 0.18  P = 0.21 r2 = 0.33  P = 0.04 r2 = 0.09  P = 0.48 

Anthropometry, ƒ(Body fat %, Mid-thigh girth) 

Fat % r2 = 0.08  P = 0.24 r2 = 0.23  P = 0.04 r2 < 0.01  P = 0.94 r2 = 0.16  P = 0.09 

Girth r2 = 0.04  P = 0.44 r2 < 0.01  P = 0.82 r2 = 0.01  P = 0.95 r2 = 0.08  P = 0.72 

%, Girth r2 = 0.10  P = 0.42 r2 = 0.23  P = 0.12 r2 = 0.10  P = 0.10 r2 = 0.18  P = 0.20 

Eccentric hamstring peak torque, ƒ(60, 180 and 300°·s-1) 

T60 r2 = 0.11  P = 0.16 r2 = 0.32  P < 0.01 r2 = 0.01  P = 0.99 r2 = 0.32  P = 0.01 

T180 r2 = 0.23  P = 0.04 r2 = 0.61  P = 0.01 r2 = 0.02  P = 0.62 r2 = 0.21  P = 0.05 

T300 r2 = 0.21  P = 0.05 r2 = 0.42  P < 0.01 r2 = 0.02  P = 0.59 r2 = 0.23  P = 0.04 

T60,180,300 r2 = 0.27  P = 0.19 r2 = 0.62  P = 0.01 r2 = 0.05  P = 0.87 r2 = 0.33  P = 0.10 

All parameters, f(Cognition, Anthropometry, Strength) 

Σ r2 = 0.39  P = 0.47 r2 = 0.82  P < 0.01 r2 = 0.41  P = 0.43 r2 = 0.45  P = 0.33 

 

 

 



Table 3.  A hierarchical forward stepwise model of factors influencing each test. 

 

 Step 1 Step 2 

10m Sprint 
Eccentric Hamstring T180 

r2 = 0.23  P = 0.04 

 

T-test 
Eccentric Hamstring T180 

r2 = 0.61  P < 0.01 

Stroop Accuracy % 

r2 = 0.70  P = 0.05 

Reactive Cut 
Stroop Accuracy % 

r2 = 0.29  P = 0.02 

 

Deceleration 
Eccentric Hamstring T60 

r2 = 0.32  P = 0.01 

 

 

 

 


