
Internet of Things as a Service (iTaaS): Challenges and
Solutions for Management of Sensor Data on the Cloud

and the Fog

Euripides G.M. Petrakisa,∗, Stelios Sotiriadisb, Theodoros Soultanopoulosa,
Pelagia Tsiachri Rentaa, Rakumar Buyyac, Nik Bessisd

aSchool of Electrical and Computer Engineering, Technical University of Crete (TUC),
Chania, Crete, Greece

bDepartment of Computer Science and Information Systems, Birkbeck, University of
London, London, UK

cSchool of Computing and Information Systems, University of Melburne, Melburne,
Australia

dDepartment of Computer Science, Edge Hill University, Ormskirk, UK

Abstract

Building upon cloud, IoT and smart sensors technologies we design and de-

velop an IoT as a Service (iTaaS) framework, that transforms a user device

(e.g. a smart phone) to an IoT gateway that allows for fast and efficient data

streams transmission to the cloud. We develop a two-fold solution, based on

micro-services for the IoT (users’ smart devices) and the cloud side (back-end

services). iTaaS includes configurations for (a) the IoT side to support data

collection from IoT devices to a gateway on a real time basis and, (b) the cloud

back-end side to support data sharing, storage and processing. iTaaS provides

the technology foreground to enable immediate application deployments in the

domain of interest. An obvious and promising implementation of this technology

is e-Health and remote health monitoring. As a proof of concept we implement a

real time remote patient monitoring system that integrates the proposed frame-

work and uses BLE pulse oximeter and heart rate monitoring sensing devices.

The experimental analysis shows fast data collection, as (for our experimental

∗Corresponding author
Email addresses: petrakis@intelligence.tuc.gr (Euripides G.M. Petrakis),

stelios@dcs.bbk.ac.uk (Stelios Sotiriadis), tsoultanopoulos@gmail.com (Theodoros
Soultanopoulos), ptsiachri@gmail.com (Pelagia Tsiachri Renta), rbuyya@unimelb.edu.au
(Rakumar Buyya), Nik.Bessis@edgehill.ac.uk (Nik Bessis)

Preprint submitted to Elsevier September 17, 2018



setup) data is transmitted from the IoT side (i.e. the gateway) to the cloud in

less than 130ms. We also stress the back-end system with high user concurrency

(for example with 40 users per second) and high data streams (for example 240

data records per second) and we show that the requests are executed at around

1 second, a number that signifies a satisfactory performance by considering the

number of requests, the network latency and the relatively small size of the

Virtual Machines implementing services on the cloud (2GB RAM, 1 CPU and

20GB hard disk size).

Keywords: Cloud computing; Internet of Things; Fog Computing;

Remote patient monitoring; Survey

1. Introduction

Internet of Things (IoT) and cloud computing are getting prominence over

the recent years, due the increasing usage of smart devices and sensors in many

application areas (e.g. healthcare [1], assisted living [2], environmental moni-

toring, industrial systems [3]). The widespread use of smart devices and sensors

acting as data aggregators connected to the Internet, in conjunction to the

emerging use of large computer platforms (notably the cloud) where the data

are transferred for permanent storage and analysis (e.g. using data analytics

platforms such as Apache Spark), shape a promising future and a great oppor-

tunity for new businesses to increase their clients and support new functionality.

This is a massive and still expanding market that is expected to reach the 11

trillion U.S. dollars by 2025 [4].

The idea of the Internet of Things combined with cloud computing, opens

new horizons in the field of real time data collection and analysis [5, 6, 7, 8].

cloud computing emerges as the key platform for IoT data storage, process-

ing and analytics due to its simplicity, scalability and affordability (i.e. no

up-front investment, low operation costs). Companies deploy applications and

systems on the cloud to avoid infrastructural expenses, operational and main-

tenance costs. A promising application domain for this technology is e-Health

2



and remote patient monitoring. Accessible monitoring, control, alert and smart

intervention solutions can provide invaluable assistance to the wellness, safety

and convenience of chronic patients, of the elderly and other user categories.

Such a solution will increase users autonomy and confidence and enable self-

managing their condition with the help of caregivers remotely. As a result, this

new model will reduce the need for patients to organize and attend face-to-face

appointments with doctors and might reduce the amount of medication and

days in hospital. All of these outcomes will increase the care efficiency and the

cost effectiveness of the solution. Key challenges are the on-the-fly data discov-

ery, collection and analysis as the IoT system might produce enormous volumes

of data that is collected and need to analyzed as close to real time as possible.

iTaaS is a two-fold solution, based on microservices for the IoT and the

gateway (users’ smart phones) and the cloud side (that includes the back-end

services for data storage and analytics). Firstly, we target on real time IoT

data collection from smartphones, with a particular interest on Bluetooth Low

Energy (BLE) devices. These are low power sensors that support mobile ap-

plication connectivity and connections to handheld devices which are already

connected to the Internet though WiFI or GSM networks. Secondly, we target

on a cloud system deployment with scalable data storage capabilities and in-

terfaces to external users and systems. The vision of the iTaaS is to transform

smart phones to gateway (fog) platforms for IoT data collection and process-

ing. Captured data are encrypted and streamed to the cloud back-end system

in order to be available to users based on subscriptions. The gateway (mo-

bile device) establishes a two-way communication between the front-end (users

carrying wearable sensors and the mobile device connected to these sensors),

and a back-end (the cloud running services for data monitoring (by authorized

users subscribing to specific users and sensor information), data analysis and

permanent storage.

Inspired by the concept of Service Oriented Architectures (SOA) [9], the

iTaaS solution makes use of modular services implementing fundamental func-

tionalities communicating with each other and offering important benefits, such

3



as scalability, re-usability multi-tenancy, increased accessibility and security

through powerful APIs for seamless application integration. iTaaS front-end

is implemented in native Android. iTaaS back-end services are implemented

on OpenStack1 and FIWARE2, an open-source distributed cloud infrastructure

funded by the EU. iTaaS reference architecture encompasses IoT-A [10, 11]

design principles in an attempt to develop an innovative IoT platform that sup-

ports generic services and IoT devices (i.e. independent of connectivity and not

coupled to specific IoT protocols).

iTaaS patient monitoring application brings high level personalisation to the

coaching suggestions by caregivers. It is easy to define abnormal pattern detec-

tion rules regarding physical (e.g. walk ability, tremor), medical (e.g. heart-rate,

oxygen saturation in blood), socio-emotional (e.g. relatives to rely on, anxiety)

activities of the patient. These rules are defined by a formal caregiver (e.g. a

physician) based on the actual needs of the patient, they are embedded into the

health monitoring scenario and operate on a publish - subscribe model: Vital

measurements transmitted by sensors are recorded and only subscribed users

(e.g. a physician who monitors the patient) have access to this information.

In this scenario, caregivers assign sensors to patients and set lower or upper

values for sensor measurements. The caregivers get notified when these val-

ues are violated (using a messaging service). The proposed coaching solution

keeps patients and caregivers in the loop tracking user’s progress, providing a

monitoring overview highlighting suspicious patterns and coaching instructions.

We focus on BLE sensors and we develop a data schema to allow for uni-

versal BLE support so that, BLE sensors can be easily linked to an ITaaS

application for data pushing (without worrying for sensor specific processes for

handling data). The gateway supports dynamic and automatic discovery and

registration of new sensors: each sensor is declared by its XML schema and

this information is registered at the back-end. The gateway runs a service for

1https://www.openstack.org
2https://www.fiware.org

4



synchronizing sensors schema information with schema information stored on a

local database (so the gateway gets updated on new sensors). For experimental

purposes, we utilized the Nonin Onix3 device (that produces the peripheral cap-

illary oxygen saturation (SpO2) and pulse rate measurements), and the Polar

H74 (that produces pulse rate measurements). Although developed to handle

BLE sensors, iTaaS can accommodate any kind of sensor protocol such as (Zig-

Bee, Zi-wave) that can be supported by a smart device (the gateway) since the

only component that is affected by the decision to select a specific protocol is

the BLE scanner for connected sensors. The rest of the system (i.e. besides the

BLE scanner) is sensor agnostic since all data are communicated and processed

in a sensor agnostic format (i.e. JSON).

Summarizing, ITaaS focuses on a) a generic IoT data collection framework

based on gateways and BLE protocol (the industry standards in sensor com-

munications), (b) a SOA design approach for both the gateway and the cloud,

(c) a proof of concept solution in e-Health implementing a real medical scenario

for remote patient monitoring, and (d) an extensive experimental analysis to

demonstrate effectiveness of our implementation. iTaaS shows how to collect

sensor data fast and on-the-fly on the gateway, the utilization of real world sen-

sors and IoT workloads, how processing of user and sensor data takes places

on a gateway with fog capabilities, how data are transmitted securely to the

cloud, how to support persistent and trusted processing and storage of data on

the cloud and, how to manage use profiles and user subscriptions to data and

services. iTaaS is expandable by design as more services can be added (e.g. data

analytics) or modified on the fly without requiring that the system be stopped

or re-designed.

iTaaS solution (design and its implementation) is based on previous work

by the authors presented in one conference [12] and two workshops [13, 14].

The architecture of the iTaaS gateway for on the fly data collection is shown

3http://www.nonin.com/Finger-Pulse-Oximeter/
4https://support.polar.com/

5



in [12, 14]. Design and implementation of the back-end solution is shown in

[13]. Based on our past experiences, we identified the need for an integrated

iTasS framework, where data of sensor devices can be easily collected to the

cloud and be distributed to interested users based on subscriptions. At the

same time, essential configurations at both ends of the architecture can be

easily adapted (e.g. setup of thresholds, notifications etc.). The integration

of all concepts referred to above has not been presented elsewhere. This paper

extends and unifies our previous work and presents an integrated architectural

and implementation view of all iTaaS concepts. Besides system architectural

issues and a remote health monitoring application, this paper is also a thorough

survey of the related literature emphasizing on IoT, the cloud and the fog,

discusses topics for future work and research challenges.

Related work in IoT data management is discussed in Sec. 2, with a partic-

ular interest on IoT data collection. Emerging technologies and technological

challenges that will shape the IoT landscape in the near future are discussed in

Sec. 2. In Sec. 4 we present the reference architecture and the description of

the front-end and back-end services. In Sec. 5, we demonstrate the experimen-

tal analysis and the significance of our results, followed by conclusions, system

extensions and issues for future research in Sec. 6.

2. Related Work and Background

This survey focuses on (a) synergies between the sensing environment and

the cloud, (b) device to platform connectivity and data aggregation at network

end, (c) data persistent storage and analysis (on the cloud), and also, (d) use

cases with particular emphasis to e-Health. An almost orthogonal issue with

large impact in today’s IoT design and implementation is security and trust.

Several approaches to IoT systems design are known to exist and many of

them have been implemented in commercialized IoT platforms5 facilitating the

5https://iot-analytics.com/product/iot-platforms-white-paper/

6



implementation of applications or, in custom solutions tailored to the needs of

a particular application domain such as manufacturing [15], monitoring of users

activity [16], assisted living [2], e-Health [17] and remote health monitoring

[18, 12, 13, 1, 19] etc. Interesting surveys covering important aspects of IoT

system design and implementation have been published in [5, 20, 4, 21, 3, 7].

Table 1 summarizes all these issues, provides pointers to related work and

summarizes the contributions of the present work in relation to these issues (last

column). Compared to existing systems, iTaaS is a two-fold service-oriented

event architecture, based on microservices for the IoT and the Fog (users’ smart

phone devices acting as data aggregators) and the cloud side (that includes

the back-end services for storage and analytics). iTaaS is driven by the key

requirements of today’s IoT systems for adaptability, security, low-cost and

scalability, modularity and expandability.

Biswas and Giaffreda [5] discuss the IoT and cloud convergence challenges

and focus on the identification of requirements for ubiquitous accessibility, con-

nectivity, dynamic user management of users and scalability. A key requirement

is efficient data collection. Focusing on e-Health and health care, Theummler,

Paulin and Lim [17] focus on the infrastructure requirements for supporting

remote patient monitoring taking into account patient monitoring parameters,

the nature of data (e.g. images and multimedia), out-hospital interactions (e.g.

between patients and health providers). Emerging infrastructure models for

supporting high quality services in IoT and health care are considered as well

including, narrow-band IoT such as Low Power Wide Area Networks (LPWAN)

and protocols (e.g. LoRa6), Edge computing [30] and 5G7. 5G will not only

support mobile telephony but also services through net slicing: Different bands

of the spectrum are assigned to support services in application domains (e.g.

remote health monitoring and personalized medicine in the narrow band). Tele-

com providers can operate services such as Software Defined Networks (SDN)

6https://lora-alliance.org
7https://5g.co.uk/guides/what-is-5g/

7



Table 1: Related work and contributions of iTaaS approach

Architectural

Properties
Existing Systems iTaaS

Surveys & IoT Design [5, 17, 20, 21, 3, 7, 4]

High-Level Architectures

Cloud : [22, 6, 23, 24]

IoT : [10, 11, 25] Fog :

[8, 26]

√
[Cloud, Fog ]

Service Oriented

Architectures (SOA)
[23, 12, 14, 13, 27]

√
[REST ]

Fog & Gateway

Architectures
[28, 29, 23, 12, 30, 14, 13]

√
[Android,IoS ]

Data Aggregation &

Protocol

BLE : [31, 25, 29, 23]

LTE : [32]

√
[BLE ]

IoT Storage Architectures [33, 34, 3, 28]
√

[MongoDB ]

IoT – Cloud Integration [22, 15, 25, 12, 14, 13]
√

[FIWARE ]

Security [35, 22]
√

[By Design]

Use Cases

Manufacturing : [15]

Farm Data: [36] Access

System: [16] Assisted

Living : [2] e-Health:

[18, 17, 1, 19, 12, 14, 13]

√
[e-Health]

8



and establish Virtual Private Network (VPN) services specifically for healthcare.

Along the same lines, Orsino et al. [32] focus on the IoT and energy efficient

data collection in 5G in a smart city scenario.

Anderson, Fierro and Culler [6] consider the problem of heterogeneity of

components in an IoT ecosystem and explore issues of synergy and interoper-

ability at all levels starting from hardware and firmware and towards the level

of device connectivity and service discovery. This paper gives concrete guide-

lines for IoT platform and application design, learned from building a full-stack

synergistic IoT platform. Kobialka et al. [25], present a work to link networks

of sensors with computing systems in a distributed way. In close analogy to

OCCI8, Ciuffoletti [22] introduces an API interface framework and specifica-

tions for interacting with IoT infrastructures based on REST9 . Their proposed

framework is simple open and expandable.

Jiang et al. [33] discuss a storage framework for IoT for structured, unstruc-

tured data and their processing in Apache Hadoop. Similar to previous work

by Li et al. [34], authors present a NoSQL storage management solution for

IoT data and they provide an ontology for data sharing between different IoT

applications. Both solutions focus on IoT data storage, in contrast to our work

that includes services for data collection on the IoT side. Cecchinel et al. [28],

focus on a storage architecture addressing issues of sensor management and IoT

data collection.

Boualouache et al. [31] propose a system architecture to collect data from

IoT environment using BLE technology and smart phones as gateways. They fo-

cus on the performance of communication and on issues of energy consumption.

Guoqiang et al. [29] propose a configurable smart IoT gateway that is pluggable,

supporting different communication protocols. Similar to iTaaS, data acquired

using different protocols in different formats are translated to a uniform format

(e.g. JSON) that is understandable by all services. In our earlier work [23] we

8http://occi-wg.org
9https://www.ics.uci.edu/̃fielding/pubs/dissertation/rest arch style

9



demonstrate a solution for benchmarking IoT devices. We introduced micro and

macro-benchmarking techniques for IoT gateway devices. However, this work

is based on a custom CoAP10 benchmarking utility.

In regards to use cases, Tao et al. [15] demonstrate an IoT and cloud service

architecture for the manufacturing field. They address connection, communi-

cation, computing and control aspects of services in manufacturing and they

discuss their approach in three applications namely, applications in the work-

shop, applications in the enterprise and applications among enterprises. They

present an analysis of the requirements for hardware, firmware, services and

human perception of IoT functionality along with key enabling technologies.

Xu et al. [18] discuss a service to handle data for medical devices in cases of

emergences, with data management and inter-operation support. They focus

on locating medical actors (i.e. staff and ambulances) in a mobile environment

and introduce a data annotation framework facilitating the access to data us-

ing ontologies. Additional related work on stand-alone systems (not exploiting

cloud technology) in e-Health, includes recognition of daily activities in a living

environment for specific user cases such as Alzheimer’s patients [1] or the elderly

[19]. They apply spatio-temporal reasoning on location or body activity signals

received from body-worn or ambient sensors. Recognition is restricted to a set

of predefined activities (models) described using rules involving spatio-temporal

constraints.

Balabanis et al. [2] focuses on monitoring users life by monitors their actions

in a indoors environment. We presented an e-health provision system for patient

monitoring using motion sensing devices (such as the Microsoft Kinect device).

The system exhibits significant benefits towards assisted living IoT environments

including reduced costs by cutting unnecessary visits to physicians. It also

provides significant benefits towards improved patient experience and safety.

For example, in rehabilitation environments proactive treatment allows real time

prevention by continuous monitoring. It also improves the overall treatment

10http://coap.technology

10



process by providing assistance to people who are hospitalized or at home and

their condition requires uninterrupted monitoring.

There are a lot of approaches for IoT data collection and management (some

of them theoretical) without providing proof of concept and performance analy-

sis of real world implementations. Others are focusing on a single technological

aspect (e.g. data management on the cloud and data analytics, sensor data

collection and communication with the cloud etc.). A holistic approach that

puts existing technologies in place and produces an end-to-end-system support-

ing the desirable properties (i.e. features in Table 1), followed by a real-world

evaluation is not known to exist (to the best of our knowledge). Most of the

works referred to above lack of experimental demonstration or proof of concept

implementation. iTaaS provides a coverage of all these features.

3. Research Challenges

Lately, IoT systems have become increasingly complex because of the use of

novel technologies and the complexity and size of modern use cases. Existing

IoT architectures have been conceptualized and implemented to address certain

challenges based on single domain and single use case-oriented requirements,

thus not considering issues of openness, scalability, interoperability and use-

case independence. As a result, they are less principled, lacking standards or

are vendor or domain specific. Most importantly, they are hardly replicable in

the sense that, most of the times, the same architecture cannot be used in many

use cases.

Future work in IoT systems design should go beyond these limits and to-

wards more open and dynamic configurable IoT platforms. This in turn goes

beyond architectures that are vertically closed so forming many “Intranets of

Things” [37]. Some first steps towards such IoT foundational technologies and

architectures have been taken (e.g. IoT-A [10]). IoT-A proposes an Architecture

Reference Model (ARM) defining the principles and guidelines for generating

IoT architectures, providing the means to connect vertically closed systems in

11



the communication layer (i.e. how devices interact with the system) and service

layer (i.e. how services are integrated). IoT-A compliant architectures may as-

sure that generated knowledge will be modular and reusable across domain or

use-case specific boundaries. IoT-A addresses the architecture design problem

and does not focus on whether existing cloud platforms can offer the tools and

services to support the implementation of IoT-A compliant IoT systems. An

attempt to address this problem is the work in [11].

The basic challenge that future work in IoT systems should address, relates

to the lack of technological components to aid and simplify the development

of cross-domain IoT applications in a fast and secure way. Among these, se-

curity, openness, interoperability through advanced connectivity and usability

(i.e. applicability) issues may play an important role in deploying interconnected

solutions. To our understanding, technology advances mainly in security, IoT

communications and IoT systems interoperability are the main pillars for break-

ing the silos of single sector deployments and allowing the development of cross

domain applications that are open, secure and scalable.

3.1. Fog Computing

Even though a cloud may offer virtually unlimited compute resources, inter-

net bandwidth may impede application performance or, business or regulatory

requirements of the application mandate for hosting resources in a specific place.

This is typically the case with user data where severe restrictions in regards to

data transfer and storage to public locations may apply (e.g. military, medical,

people activity monitoring applications). Another limitation is with regards to

security: Although many attempts towards increasing the security on the cloud

have emerged lately, users are not always willing to send their data to the cloud

due to the unknown storage location and also, due to the perceived “distance”

between them and their data. In general, the user or application owner has

limited control on cloud infrastructures that are managed only by the service

providers. This distance is also the main reason for the long delays that are

experienced sometimes between the client devices and the services locations [8].

12



Examples for delay intolerant applications are physical access control systems,

health monitoring and factory automation. To address these limitations, the

paradigm of fog computing has lately emerged, starting from Cisco [38, 39].

Fog computing can be assumed as an extension of cloud computing, bringing

virtualized services closer to the edge of the network (i.e. close to the user

on gateways or on user devices). Fog brings the benefits of low latency (due

to the close proximity), location awareness and increased security, privacy and

availability. Efforts to standardize architectures and platforms for extending the

cloud to support functional edge nodes are currently underway (e.g. OpenFog

[26]). However, since the paradigm of fog computing has emerged only lately,

architectures and platforms for extending the cloud to support functional edge

nodes have not been fully designed yet. In a cloud-fog scenario, fog-nodes11

are installed close to the network edge. A fog node ingests data from IoT

devices, runs mission critical functionality and communicates the results of this

processing to the cloud. It is a responsibility of the application designer to

decide on the optimal place for data processing (i.e. the fog node or the cloud).

The most time-sensitive data must be processed on a fog node closest to the

IoT devices.

A fog-node can be realized as a separate (probably virtualized) infrastructure

running services ranging from data collection, storage, encoding, decoding, com-

munication, processing etc. This is feasible for nodes connected to a sustainable

power source. Data are processed and stored on the fog nodes (temporarily

or permanently); only aggregated results (e.g. simple statistics, visualization

charts) and sent to the cloud for permanent storage and analysis (e.g. big data

analytics to gain business insights and for generating new application rules based

on these insights by applying machine learning and data mining). Alternatively,

implementation of fog nodes may rely a lightweight solution receiving feeds from

IoT devices and providing feedback in real time based in a time-critical scenario

11https://www.cisco.com/c/dam/en us/solutions/trends/iot/docs/computing-

overview.pdf

13



(e.g. malfunctioning devices due to hardware failure, compromised devices in a

security breach scenario, fraud detection on ATMs). The functionality of a fog

node is constraint by the energy consumption restrictions of the device (e.g. a

fog node on a smart device running on batteries in a mobile user scenario). The

analysis is applied to most time sensitive data only (e.g. for detecting signs of

problems and preventing failure by sending control commands to actuators).

3.2. Security

Future IoT system design should devote significant effort to deal with secu-

rity, privacy and trust in decentralized cloud and foain computing infrastruc-

tures. Securing IoT applications that are distributed over several IoT and cloud

infrastructures is a challenging task. Regulatory entities (e.g. US FTC12 and

the article 20 working party of the EU13) recommend that the principles of Se-

curity by Design and Security and Privacy by Default14 should be applied in

IoT. Security and privacy by design suggests taking security and privacy into

account since the design phase of a system or service and apply configurations

that assure the highest security and privacy level. Identifying the main actors

(e.g. users, devices, systems, and services) and associating actors (i.e. their

profiles) to access rights for services and data is of paramount importance.

The Industrial Internet Security Framework by IIC15 and the security pillar

of the reference architecture of the OpenFog consortium16 highlight the need for

security monitoring. They emphasize the need for monitoring devices, networks

and applications at the edge of the network (i.e. on devices and edge nodes)

and in the cloud. For example, the security pillar of the OpenFog reference

12https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-

report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
13https://ec.europa.eu/info/law/law-topic/data-protection en
14https://www.ipc.on.ca/wp-content/uploads/Resources/pbd-privacy-and-security-by-

design-oracle.pdf
15https://www.iiconsortium.org/pdf/IIC PUB G4 V1.00 PB.pdf
16https://www.openfogconsortium.org/wp-content/uploads/OpenFog Reference Architecture 2 09 17-

FINAL.pdf

14



architecture specifies the FaaS (Fog-as-a-Service) security monitoring function-

ality for devices at network end. They acknowledge the need to identify proper

placement for monitoring functions and the need to deal with security at the

scale of big data.

Although cloud systems are considered to be more secure for deploying IoT

applications, users and data are exposed to many risks as IoT is operating

in the periphery of the cloud, it is open to many users and is generally less

protected than the cloud itself. This fact opens-up new research challenges for

methodologies ensuring security and for methodologies for detecting and for

dealing with the cause and point of system failure if security fails [40]. The

EU’s GDPR17 has a significant impact on IoT systems design. Data protection

in e-health in particular is crucial, as potential intrusion may not only lead to

vulnerable personal data theft (e.g. patient data in hospital databases) but may

also lead to risks in human life (e.g. disruption of important sensors monitoring

patient etc.).

Due to the size and complexity of modern IoT systems, security threats can

be detected in many aspects of system operation and relate mainly to malicious

user’s behavior detection which is expressed as (a) fraud detection in which

case, authorized of unauthorized users operate the system for the purpose of

unfair or unlawful gain or, (b) intrusion, in which case, unauthorized users

are attempting to disrupt normal system operation. Similar behavior is now

detected in virtualized environments such as the environment of a cloud provider

(now affecting the operation of the system in scale and a large number of users)

with certain economic and operational impact.

A key problem for IoT applications that collect large amounts of data, is

the on-the-fly and real time solutions for anomaly detection either for system

failures, for improving QoS or for detecting security leaks and vulnerabilities.

When errors and faults occur, when hardware resources are faulty or configured

or utilized in a way that causes application performance degradation, prompt

17https://www.itgovernance.eu/en-ie/gdpr-report-ie

15



action should be taken in order to ensure high quality of service. Traditional

large-scale solutions for malicious behavior or malfunction detection, suggest

either continuous monitoring of the state of fog or cloud components or periodi-

cally monitoring of system logs, or both. In large-scale cloud and fog-distributed

infrastructures, system logs are becoming big data as time passes. The moni-

toring of large system logs resorts to intro or retrospective analysis of big data

[41, 42]. The risks have been highlighted in several application domains and

may take the form of Distributed Denial of Service (DDOS) attacks18 (e.g. car

hacking19). An IoT deployment should use latest virtualisation and security

technologies to enhance the performance of IoT platforms [43]. Anonymiza-

tion, pseudonymization and data protection techniques can be applied to avoid

exposing data to unauthorized third parties. The privacy of the user sensitive

data can be supported also by new techniques such as blockchains20 which are

currently emerging.

Fog architectures may help enhance security however, new security issues

emerge, mainly due to the fact that fog nodes may be untrusted. Given that

it is often easier to hack into client software and because of the proximity of

fog devices to end users, fog nodes should be first to provide access control and

encryption, contextual integrity and isolation mechanisms over sensitive data

before it leaves the node. Techniques for distributed and hybrid identity man-

agement can be applied (e.g. access to data and services protected by OAuth2.0

protocol21). Techniques for supporting the confidentiality and integrity of data

need to be developed. Off-the shelve fog or private cloud devices providing the

desired functionality are currently becoming available on the market at afford-

able prices (e.g. SixSQ’s NUVLA Box22).

18https://www.symantec.com/connect/blogs/iot-devices-being-increasingly-used-ddos-

attacks
19https://www.theguardian.com/technology/2016/aug/28/car-hacking-future-self-driving-

security
20https://www.blockchain.com
21https://oauth.net/2/
22https://sixsq.com/products-and-services/nuvlabox/overview

16



3.3. Web of Things (WoT) - Semantic Web of Things (SWoT)

The world is moving towards machine-type communication, where anything

from a smart sensor to products in super-markets will be connected to the inter-

net. Web of Things (WoT) is an initiative and framework towards unifying the

interconnected worlds of Things (i.e. devices, sensors) into a single architecture

[44]. WoT is far from being a reality to date, mainly due to the fragmentation of

technologies that are currently being applied for the design and implementation

of IoT systems. A common work around to this problem is to allow each Thing

become part of the existing Web. Then each device can be published on the

Web (i.e. advertise its identity and contents), be discovered by Web search en-

gines and be used by humans or applications just as any other Web site. Then a

Mashup service23 will allow application developers to compose new applications

in significantly less time minimizing the effort required to maintain the system

each time a device or service is added, re-moved, or updated. Node-RED24 and

WireCloud Mashup service25 of FIWARE support this functionality.

Although lightweight Web servers26 can be embedded in small devices in

order to enable WoT functionality, they feature limited resources and the solu-

tion is not optimal in terms of battery life time, sensor autonomy and cost. A

work around to this problem would be to deploy a Web Proxy, that runs on the

cloud and keeps the virtual image of each Thing. Through Web Proxies, not

only Things can communicate with other entities or with the cloud but also,

the Things (their descriptions, data and services) become part of the Web, so

that they can be published, consumed, aggregated, updated and searched for.

Mapping any device into a Web Proxy makes the integration (configuration of

new applications or re-configuration of existing ones) much easier just like Web

sites can be created and published on the Web.

Essential parts of the WoT proxy is an API interface to allow connections

23soyl12
24https://nodered.org
25https://catalogue-server.fiware.org/enablers/application-mashup-wirecloud
26https://www.linux.com/news/which-light-weight-open-source-web-server-right-you

17



with the outside world and a directory. Sense2Web27 is an implementation of

a WoT directory and is implemented as a service in FIWARE cloud28. The

service acts as a meeting point for the IoT context producers that intend to

register the availability of their Things and sensor devices, and the IoT context

consumer applications that intend to discover them using SPARQL. All devices

are declared as NGSI-9 entities29. In order to allow the users to understand

what data or services are offered by an IoT entity, the directory will include an

additional human readable component of the offered services (e.g. OpenAPI30).

The WoT Model31 provides definitions for Web Things proposes a REST Web

API for Things.

The Semantic IoT or Semantic Web of Things (SWoT)32 concept emerged

recently and relates to technologies for designing inter-operable domain or cross-

domain Web of Things Applications. SWoT is an extension of the Web of Things

that enables applications to share content and services beyond their boundaries

or, even more important, to create, new applications as a composition of ex-

isting ones (e.g. using mashups). The main idea is to accomplish these tasks

automatically or with minimum human intervention. To enable the vision of

SWoT, tools that are capable of understanding the meaning of IoT applications

(i.e. data and services) and reason over their content must be applied. Semantic

Web (link) technology is a solution to this need. In Semantic Web33, formal

definitions of concepts and their properties form ontologies, which are defined

using the RDF, RDFS and recently the OWL language34. IoT ontologies, in

particular, comprise of definitions of IoT concepts (e.g. sensors, services) and

of their properties (e.g. measurements) by means binary relations. The Seman-

27http://info.ee.surrey.ac.uk/Personal/P.Barnaghi/doc/LinkedData.pdf
28https://fiware-iot-discovery-ngsi9.readthedocs.io/en/latest/
29http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/NGSI-9/NGSI-

10 information model
30https://www.openapis.org
31http://model.webofthings.io/#web-things-model
32https://semantic-web-of-things.appspot.com/?pĪSWC2017Tutorial
33https://www.w3.org/standards/semanticweb/
34https://www.w3.org/OWL/

18



tic Sensor Network (SSN)35 ontology by W3C is applicable to a wide range of

applications. Query languages such as SPARQL36 can be used for querying in-

formation in ontologies and reasoners such as Pellet37 can be applied for finding

inconsistencies of for inferring new information from information represented in

the ontology.

Approaches towards implementing the SWoT vision are currently becoming

available and some have demonstrated their potential in experimental set-ups.

To the best of our knowledge, SWoT methodologies are not commercialized yet

or applied in real-world or large-scale implementations. Most IoT ontologies are

not widely accepted yet or have not proved to be scalable (as huge amounts

of data are generated in typical IoT application). Real-time annotation of IoT

data (i.e. deriving their meaning) and instantiating this information to ontolo-

gies would require a huge amount of resources. In addition, the completeness of

information in IoT ontologies (which is related to the expressivity and complex-

ity of the representation) and speed of processing, are traded-off. Therefore,

existing solutions to the problem of scalability rely on lightweight ontologies

such as IoT-lite [45] or Sensor Domain Ontology (SDO) [46]. Both solutions

are defined as subsets of SSN ontology and promise sensor data annotation and

instantiation in real time. The IoT-A ontology [47] extends SSN ontology to

represent more IoT-related concepts such as services in addition to sensor de-

vices. Sense2Web [48] is also an implementation of these ideas which is available

as service in FIWARE.

3.4. Low Power Wide Area Network (LPWAN) Connectivity and 5G

IoT manufacturers have developed products (e.g. sensors), which typically

use short range protocols such as Bluetooth and later Bluetooth Low Energy

(BLE) to connect to a gateway (a smartphone or tablet) and then to the cloud

via some backhaul (e.g. a cellular network and the internet). However, the

35https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
36https://www.w3.org/TR/sparql11-query/
37http://semanticweb.org/wiki/Pellet

19



commercial success of this solution is questionable as the number of IoT devices

(sensors) that can be connected to a smartphone using Bluetooth is limited

(especially for sensors and gateways running on battery and unless the gateway

is connected to a sustainable power source). Bluetooth and BLE, the same

as WiFi and ZigBee, are not suited for long-range performance, while cellular

networks are costly, consume a lot of power, and are expensive.

Low Power Wide Area Network (LPWAN) technologies fill the gap between

mobile (3G, 4G, LTE) and short-range wireless (e.g. Bluetooth, WiFi and Zig-

Bee) networks. The trade-off is the achievable data and error rate (i.e. LPWAN

protocols do not guarantee delivery of data packets). LPWAN technology falls

short in terms of QoS compared to cellular standards and this means that an op-

erator cannot use it to provide the kind of Service Level Agreements (SLAs) that

are critical for customers. However, LPWAN specifications fits well the require-

ments of many IoT applications (e.g. smart cities, home automation, industrial

automation, environmental monitoring, e-Health) who need to transmit small

quantities data periodically over a long range, while maintaining long battery

life (e.g. a wearable health sensor that only transmits when vital measurements

exceed some predefined threshold).

LPWAN networks are being deployed now because the cost to deploy the

network in unlicensed bands requires much less capital than the cost of its 3G,

4G counterparts. SigFox38 and LoRa39 are the main competitors in this land-

scape targeting similar applications. The same do other technologies such as

Weightless, Ingenu, NB-IoT, and LTE-M40, which also enable long rage devices

to be connected to telecommunication networks with the latter two been stan-

dardized within 3G and 4G respectively. Typically, an IoT application can be

deployed only if the network is already there. However, for vendors that need to

deploy IoT applications on their own and run the network by themselves, LoRa

38https://www.sigfox.com/
39https://www.lora-alliance.org/
40https://www.link-labs.com/lpwan

20



is a good option. LoRa supports 2-5Km ranges in urban areas (entire cities can

be covered with a few LoRa antennas) and up to 15Km in suburban areas. It

works in the unlicensed spectrum below 1Ghz which come at no cost. It is an

asynchronous protocol, which is optimal for battery lifetime and cost. There

are no royalty issues with LoRa (except of the LoRA modulation chip which is

produced by Semtech41).

5G emerged as a need to go beyond the limits of its predecessor cellular

technologies. 5G focus on dividing the network up into slices to fit different

services for different use cases while ensuring QoS. 5G will act as an enabler to

IoT service providers and end-user organizations who have to face the reality

of managing a diverse range of connections, notably cellular and LPWAN, in

addition to short range connections, such as BLE, ZigBee or WiFi. Leveraging

on 5G capabilities (ubiquity, integrated security and network management) a

network of LoRa devices can be developed anywhere, without installation of

additional network equipment and without the need for network management

(which is offered by the cellular network). Alongside, 5G technology comes with

its own authentication, authorization, and accounting framework thus minimiz-

ing the effort to supporting this functionality in LPWAN IoT networks. Soon,

telecom providers will support LoRa functionality and synergy within 5G. LoRa

has been adopted by major EU telecom providers including among many others

Orange (France), KPN (the Netherlands), Proximus (Belgium), Netzicon (Ger-

many), Unidata (Italy). LoRa capabilities will eventually be integrated into

their 5G service base stations [49].

4. IoT as a Service (iTaaS)

iTaaS is a two-fold solution, based on micro-services for the IoT (users’

smart devices) and the cloud side (back-end). We followed a valid system de-

sign approach [10, 50] that identified (a) the functional components and their

41https://www.semtech.com

21



interaction, (b) the information that is managed and how this information is

acquired, transmitted, stored and analysed, (c) the software entities that sup-

port the functional and information activities, (d) the requirements for assuring

data, network and user security and privacy. iTaaS (reference) architecture

[12, 14, 13] is described by a set of UML diagrams including (a) information

(class) diagrams describing information that is handled by the system, (b) ac-

tivity diagrams describing flowcharts for several types of user actions the most

important of them being, system login request (user authentication and autho-

rization), request for new account, request to access a facility or area and, event

handling (i.e. handling cases of overcrowded areas and critical events) and, (c)

an architecture diagram.

iTaaS architecture is organized in two processes, the data collection from

the IoT system and the back-end cloud. The sensors are embedded or connect

to user devices (e.g. smartphones) that send data to the cloud. The services

are REST-based [27] and integrate the system functionalities that are grounded

upon four zones as shown in Fig. 1.

Figure 1: Generic architecture for data capturing and cloud data management

The “User Device” includes the IoT data source generators notably users,

sensors and smartphones. Furthermore, users can utilize the front-end interface

to send data to the back-end wherein third party users (e.g. doctors and physi-

cians) can access it. Finally, they are able to receive updates or notifications

when required (e.g. a situation is critical). To develop our solution, we utilized

22



two types of BLE sensors; the Polar H742 and the Onyx II43 that include the

following features.

• The polar H7 is a BLE transmitter recording in real time accurate the

heart rate levels. The device is attached around the chest with an elastic

belt and it detects heartbeat. It gives a timing reference for a specific

heart rate measurement and transmits the information to the back-end.

• The Onyx II (model 3230) provides an oximetry monitoring solution that

allows monitoring vital data such as the oxygen saturation range and

heartbeats per minute.

The “IoT side” is a fog node that includes various modules such as device

pairing, data collection, a lightweight database, linking to the cloud, connectiv-

ity, data filtering, event processing and notification services. It implements the

following actions:

• Discovery and registration of new BLE sensors using the generic sensor

schema.

• Data filtering mechanisms for reducing communication overhead.

• Encryption for secure connection with the back-end and anonymization

for ensuring user privacy (only access tokens are transmitted).

• Local data caching, for handling situations of poor or no bandwidth con-

nection and data synchronization with back-end when connection is es-

tablished.

• Emergency mode operation that allows prioritization of data collection.

This allows messages to be exchanged among the subscribed users for

taking actions.

42http://www.polar.com
43http://www.nonin.com/Onyx9560

23



• Personalized coaching by associating coaching rules with the actual con-

dition of the patient. The rules are defined by the physician on the cloud

and are uploaded to the gateway. This way, decisions are taken locally

on gateway minimizing communication response times. The gateway syn-

chronizes and gets updates on rules defined on the cloud.

The “cloud back-end side” implements services for storage, big data pro-

cessing, publication and subscriptions, event management, user authentication,

messaging, services for establishing secure network connections with gateways

or users (including encoding / decoding of user data). The event management

is used for decision making and user rule management. The publish/subscribe

service is for data streaming from the IoT to the subscribed applications and

users. The big data processing module is responsible for big data analytics (e.g.

using Apache Hadoop or Spark). This module provides API interfaces for such

systems to connect and perform analytics. The “applications” or end-users can

be (a) physicians (or caregivers) who subscribe to user data, have access to sen-

sor measurements and are entitled to provide coaching instructions to patients

and, (b) administrators or technical specialists that define schemas for new sen-

sors, can create new users and define their access rights. Both, physicians and

administrators can access the system using a Web application.

The storage system is a MongoDB database44. The NoSQL format of Mon-

goDB makes it easy to store semi and unstructured data and supports perma-

nent storage for users, sensors, messages, rules, events (e.g. rule violations) and

actions undertaken by health care personnel in response to events. For IoT

applications dealing mostly with massive volumes of sensor measurements (e.g.

JSON formatted data), NoSQL databases are prevailing due to their scalability,

easy maintenance (they require less management by supporting automatic re-

pair, data distribution and data model adaptation. Many commercial solutions

are available and selection depends mainly on application domain and data type.

44https://www.mongodb.com/scale/nosql-database-comparison

24



Among them, Apache Cassandra, Redis, and MongoDb are very popular with

the latter being particularly good for JSON data storage (such as data in IoT).

Compared to relational databases, NoSQL databases are extremely performant

and scalable (i.e. they can handle very large data sizes while maintaining very

good performance) allowing both, common operations such as key indexing,

queries by individual keys, and also non-common ones, such as text search-

ing (e.g. MongoDB), values expiring (e.g. Redis), map/reduce or distributed

storage (e.g. Cassandra).

4.1. Implementation

In the following, we present a detailed discussion of the IoT side services

(in Sec. 4.1.1), the back-end cloud services (in Sec. 4.1.2) and their integration,

interaction and data flows (in section 4.3.3). Each service is implemented as a

REST API. Fig. 2 shows the iTaaS system implementation for IoT device data

management on the cloud.

Figure 2: iTaaS system implementation for IoT device management on the cloud

4.1.1. IoT side services

The implementation is based on BLE standard45 to support low latency and

short-range networks (less than 50m) for low-power devices. BLE implements

the Generic Access Profile (GAP) that defines the mechanism for BLE devices

45https://developer.android.com/guide/topics/connectivity/bluetooth-le

25



to communicate with each other, by broadcasting and observing data. This

mechanism makes a device visible and allows other devices to connect with it.

BLE supports also two core protocols referred to as ATT (Attribute Protocol)

and GATT (Generic Attribute Profile). GATT (Generic Attribute Profile) de-

fines how data are formatted and exchanged. GATT is built on top of ATT

(Attribute Protocol) and defines how devices that follow the BLE protocol can

transfer data when paired. It uses the attributes provided by ATT, organizing

them into a hierarchy of data structures. It further divides information into log-

ical pieces (e.g. heart rate service) and “features” that are information specific

to a particular sensor (e.g. heart rate measurement).

The gateway is dynamic allowing automatic discovery and registration of

new devices or sensors. Each device or sensor is declared by its XML schema

which is stored in the cloud. Only devices whose XML schema has been defined

on iTaaS platform can connect to the gateway. Once a device is registered to

iTaaS gateway (running GAP service) its XML schema is downloaded to the

gateway from the cloud. Then, its data format and identity become protocol

independent by associating its GATT profile with a generic XML schema (en-

coded as Java Object) that defines the characteristics and data that can be

processed by the iTaaS platform (not all GATT characteristics of a BLE device

or sensor need to be mapped to the XML schema). The XML schema allows for

recognition of attribute values of the sensors. It’s a responsibility of the system

administrator to define XML schemas for new devices. iTaaS has the ability

to recognize and register new characteristic values of BLE sensors (e.g. pulse

rate in addition to blood-oxygen saturation) by editing their XML schema (for

adding new characteristics).

Formal XML schema for two BLE sensors is presented in the Appendix. The

description of the XML schema includes:

• Information about sensor name (tagged as “sensors”): The sensor infor-

mation model for the specific BLE device for data collection.

• Device name (tagged as “device name”): The device (sensor) name (e.g.

26



NoninOnix, Polar H7).

• Unique identification per sensor (tagged as “uuid”): The unique id per

sensor (e.g. the MAC address).

• Values to collect (tagged as “values”): It characterizes the sensor name

and the units of the sensor data (e.g. percentages of data that is about to

be collected, FORMAT UINT8 that is, an 8-bit integer).

• Format (tagged as “format”): It characterizes the data type of the data

to be collected (for example collecting float data).

• In some cases, BLE sensor manufacturers define complicated functions for

decoding their features (tagged as “position” and “multi”).

The IoT side (gateway) services are organized as shown in Fig. 2 and in-

cludes:

Application Logic. The application logic is the centralized module that orches-

trates services running on the gateway: Determines in what sequence the ser-

vices run and how there are synchronized (e.g. when the user requests data

to be send to the cloud, application logic activates the connectivity service for

sending data). In addition, the service runs

• The management module for handling (i.e. comparing with thresholds)

the measurements produced by the sensors according to patient specific

rules which are defined by the caregivers and are downloaded from the

cloud,

• A module for processing measurements that calculates the average values

and periodically,

• Determines the conditions for collecting and transmitting data to the

cloud: allows a user to select the condition for data collection (on time-

interval, on demand, and on rule violation, as explained in Sec. 4.1.3).

27



Sensor Data Collector. It activates the mechanism to determine which periph-

eral devices advertise data to the service and establish a GAP connection with

authenticated BLE devices (i.e. sensors in our case). Before that, application

logic service downloads (from the cloud) the XML schema of the sensors which

are entitled to connect and transmit data to the service. The XML data of

sensors are stored in the Local Storage. The XML of the connected sensor

is converted to a Java object through a Java document object model parsing

process with the aim of identifying attribute values of sensors. Sensor authen-

tication is carried out by comparing the MAC address of the sensor with that

defined in the XML. The XML also provides information on what measure-

ments are useful for the application. Sensor data are then translated to JSON

and passed to application logic for processing on the gateway. Fig. 3 illustrates

this process.

Figure 3: Sensor Data Collector internal processes

Local Storage. The local storage allows insertion, deletion and update of data

and it includes the database manager, the data encryption and decryption mod-

ule and the SLQLite46 database engine as shown in Fig. 4 The database manager

defines the appropriate tables for different types of data and predefined opera-

tions such as the “add sensor measurement” which stores the measurement of

a sensor, the “delete sensor measurement” for deletion of a specific sensor, the

“return sensors” that returns the identifier of a sensor. The “data encryption

and decryption” is a component that runs on top of local storage for decod-

46https://www.sqlite.org/index.html

28



ing/encoding data based on the Advanced Encryption Standard (AES). Finally,

the SQLite database47 includes tables such as the “user device” comprised of the

user id and the paired device (email and device registration id), the “user rules”

that includes the user id (email) and sensors (device name id) along with the

rule thresholds, the “sensor measures” that store data locally in case of failure in

communication. The service contains the so called “asset folder” that includes

the XML format of each sensor. Sensor data can be stored locally in the SQLite

database and are deleted upon transmission to the JSON cloud storage. For

example, data can be stored on local SQLite storage when WIFI connection is

lost and transmitted to the back-end when connection is up again.

Figure 4: The Local Storage internal processes

Connectivity Service. The Connectivity Service is the communication channel

between the gateway service and the cloud. Data is transformed to JSON and

then with the suitable asynchronous calls is sent securely to the cloud. The

data exchanged is packed in JSON format and data (Base64) encryption (or

decryption) is applied before transmission. The connectivity service operations

include (a) the recovery of device registration identifier from the cloud (b) it

sends the registration id to the cloud using the appropriate HTTP headers, (c)

47https://www.sqlite.org/index.html

29



it downloads rules per user using a post API call so data is forwarded to the

application logic, which in turn transfers it to the local storage, (d) it sends

sensor data using the on time interval, the on “demand” or the “violation rule”

functions (explained in Section 4.1.3) and (e) when logging into the applica-

tion to verify the identity and access rights of the visitor: It checks the local

storage for user’s credentials (i.e. login data or session key) and attempts to

automatically connect the user with the back-end.

Google Cloud messaging (GCM). The Google Cloud messaging48 is a free ser-

vice that allows developers to send messages to multiple platforms including

Android and iOS. It is comprised by a GCM server deployed in the cloud and

a GCM client that is part of the front-end service. The steps to send a message

are as follows:

• The smart phone service sends an HTTP request to the GCM server using

credentials designated by Google via AppEngine. The Google Connection

server responds to the device with a message and assigns a unique Regis-

tration ID to it.

• Then the client service sends the Registration ID to the backend (applica-

tion logic) for later use. The server stores the registration ID of the device

to local storage until the user decides to send a message.

• Using the Registration ID along with the text message, it makes a request

to the GCM server to send in information as message to the application

using a secured way as it can keep the message until the device is available

online.

Notification Service. The notification service informs the users with appropriate

prompts namely “toast messages” for Android devices and “alerts” for impor-

tant changes occurring in the flow of operation of the service. The notification

48https://developers.google.com/cloud-messaging/

30



service works independently from GCM service that handles user prompted

communication. The gateway service in implemented on native Android and

runs on a mobile device (e.g. a smartphone). The interface is implemented

in Javascript, HTML, jQuery and CSS. The asynchronous communication with

the cloud is implemented using AJAX calls.

4.1.2. Back-End Cloud services

iTaaS back-end is a composition of autonomous RESTful services [27] com-

municating with each other over HTTP. Individual services or groups of services

are deployed on the same or different Virtual Machines (VMs) on the cloud.

Network delays are expected due to the nature of this design. However, the

experimental results (Sec. 5) demonstrate that iTaaS is capable for responding

in real time even under heavy workloads. Nonetheless, the advantage of this

Service Oriented Architecture (SOA) is, system modular design, ease of config-

uration (that best suits the need of an application), ease of maintenance and

expandability. For example, more services can be added at-run time or, any

service can be moved to a different VM (on the same or different cloud) with

minimum overhead (i.e. only the IP of the service will change). Access to data

and services is protected by an OAuth2.0 mechanism. Some of the service mod-

ules in iTaaS architecture are available as reusable Generic Enablers (GEs) on

FIWARE catalogue49. iTaaS back-end implements the following services:

Application Logic. In line with application logic on the front-end, its purpose

is to orchestrate, control and execute services running on the cloud. Threshold

violations (reported by the Event Management service below) are typically man-

aged by this component. When a request is received (from a user or service), it

is dispatched to the appropriate service. For example, services regarding user

accounts and access rights are dispatched (through application logic) to user

management service. It is tightly related with the connections and the context

49https://catalogue.fiware.org

31



broker services (below) which form the communication channel with the gate-

way. Finally, application logic performs basic security controls (e.g. checking if

a session between the mobile application and the cloud has been initiated).

Connectivity service. in line with connectivity service running on the front-end,

it implements secure asynchronous communication between the front and back-

end. Encoded data are formed in JSON and are exchanged using AJAX calls.

Publication and Subscription service. This service acts as a mediator for the

data sent to the back-end and the end-users or applications. Using this service,

applications or users can subscribe to data produced in the front-end. Sensors

are listed as “public entities” and physicians are subscribers to these entities.

Each time a new sensor is registered to the system, this component is updated

in order to update its context (e.g. sensor name) and its content (e.g. data to be

collected such as heart rates). It is implemented using Orion Context Broker50,

a ready to use service of FIWARE. It is responsible for the management of

publications and subscriptions related to sensors and measurements. When

a new patient-specific sensor is used, a new entity is created in the broker.

Similarly, when a measurement becomes available by a sensor, a notification is

sent to all entities (e.g. users or serviced) subscribed to this information.

Event management service. This module gets input from the Publication and

Subscription service (above). When the sensor Data collection service creates

a new measurement, the corresponding entities in Publication and Subscription

service is updated as well. The Event Processing service subscribes to this

information and gets a notification about the change. This triggers the execution

of rules set by the physician (which are stored in the Storage Service) to govern

the monitoring of the patient wearing the sensor. If the sensor values are within

the limits of these rules no action is taken; otherwise (e.g. heartrate exceeds its

50https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-

context-broker

32



threshold), the Event Monitoring Service notifies the physician to take action

(e.g. an alert indication is send to the patient using GCM service).

Google Cloud Messaging (GCM) service. In close analogy to the GCM service

running in the front-end, allows text messages to be managed easily and to be

sent the notification message on the IoT side.

User Management service. implements functionality for user management, in-

cluding creating, editing, deleting users and their profiles, their access rights to

data and services and access history. This information is stored in the database.

For example, using this service, application logic service checks the database

whether to authorize users to access and use the front-end. It implemented

using the KeyRock Identity Management51 service of FIWARE. It provides also

a Single Sign On (SSO) service for secure access to services, data and networks.

It applies (a) identification services for users (b) management of their profiles

and, (c) authorization services supporting access control based on user roles and

access policies based on OAuth2.052 mechanism.

Big Data Processing service. Allows big data platforms such as Apache Spark53

to perform data analytics on the collected data. Data could be analysed on real

time. This component is particularly useful as more and more data is stored

in the cloud. The big data processing service will handle analytics for useful

feedback (e.g. historic data analysis).

Sensor Management Service. It is a service responsible for importing, editing,

viewing and deleting available sensor devices. In particular, the administrator

imports an XML file for each sensor that essentially has the descriptions of all

metadata information about the sensors. With this service in place, new sensor

formats (their XML) can be defined and used in the system. An example XML

scheme for the Polar H7 and NoninOnix 3250 sensors is shown in Appendix.

51https://catalogue-server.fiware.org/enablers/identity-management-keyrock
52https://oauth.net/2/
53https://spark.apache.org

33



There are also services that implement functionality for medical users (e.g.

physicians):

Rule Management Service. The physician sets rules for each patient that is

monitored. The rules are basically the thresholds (upper and lower threshold) as

they offer a maximum and a minimum permissible value where the intermediate

level of the values determines the normal state of a patient. For example, a user

may have a maximum threshold of 120 and a minimum of 80 heart rate. If the

patient’s measurement value is higher than these limits then, the user violates

this rule set for him by his physician and the condition is now considered critical.

Measurement Management Service. The physician can access the history of the

patients she/he is following. That is the most recent and past measurements,

including the name of the measurement, its start and end time.

Patient Management Service. The physician can access the patients she/he is

following along with their condition (normal or at risk) and can choose to send

a message to a patient.

Storage service. This is the shared database where data generated from all

services referred to above are stored. It is implemented using MongoDB54 and

stores user information, rules for patient management, sensors and history of

data sent by a sensor in conjunction with the date of measurement and patient

status.

The back-end is implemented on a FIWARE platform running on Open-

Stack55. They communicate asynchronously using Slim PHP56 (for handling

REST requests and for communicating with the database), cURL57 for com-

municating data and AJAX requests between services and, finally, MongDB for

the database.

54https://www.mongodb.com
55https://www.openstack.org
56https://www.slimframework.com
57https://curl.haxx.se

34



4.1.3. Integrating IoT and Cloud services

Figure 5: iTaaS Data flow

Fig. 4.1.3 presents the data flow and data transfer among components in

patient monitoring scenario (mainly focused on how data is collected from the

user sensors and is transmitted to the cloud). The patients are the service users

and the doctors are the consumers. In this scenario, the following actions take

place in a logical sequence:

• Registration of a new sensor: An XML schema describes each sensor. The

system administrator accesses and modifies the XML schema of the sensors

(as presented in Appendix). These hold information for the sensors so to

be recognized by the gateway service.

• Registration of a new user: The system administrator uses the authenti-

cation mechanism to register new users to the service using the email as

registration identifier (id). The user’s profile is stored locally and in the

cloud authentication service.

• Request to the GCM service: The service provides identification per device

using a device identifier (id) from the GCM service.

35



• User and device registration in the cloud: The service uses the local storage

for storing data associated with a user identifier (i.e. user email address).

The data are forwarded to the cloud using an HTTP post command (fol-

lowing the gateway REST API).

• Sensor assignment and user rules: This is used to associate sensors to user

and to assigns rules applicable to each sensor. For example, in a healthcare

scenario, medical personel can define sensor category (e.g. Nonin pulse

oximeter), and set lower and upper values for sensor measurements, thus

to be notified when these values are violated using GCM service.

• Rules for mobile devices: The service transfers the rules from back-end to

front-end based on an HTTP post request using as parameters the user

id, and an appropriate identification code to get rules and sensors related

to the specific user and store them in the device’s local storage.

• User Interaction: The user does not require making any configuration, as

the service is automated and dynamic. He/she only has to wear a portable

BLE sensor and carry a mobile device. The sensor is automatically paired

to mobile device. Then the service can monitor sensor data in real time.

• Data forwarding to the cloud: The data that is forwarded to the cloud

include Device Name identifier (i.e. the sensor identifier name) and Mea-

surements (i.e. name and value of the measurement).

• User interaction: Average sensor values are transmitted to back-end per

regular intervals or on demand. We distinguish between two modes op-

eration namely a) the smooth mode: The measurement values generated

by sensors are within the range of the maximum and minimum thresh-

old and are transmitted to back-end per regular time intervals and b) the

risk mode: The measurement values generated by sensors violate one of

the rules and are transmitted to back-end immediately. In addition, the

use (patient) has to option to transmit data to back-end on demand (on

his/her own initiative).

36



• The violation rule: If theres is a rule violation, the service activates the

risk mode (above) automatically and sensor measurements are transmitted

per second.

• Monitoring measurements in real time: One of the most important func-

tions of the system is the fact that the end-user (e.g. a physician) has the

option to monitor real time measurements of the users.

• Measuring Time: It refers to the date format (year- month-day) and time

(hours: minutes: seconds) information model including the measurements

interval.

• Messaging to user: GCM forwards messages to the user in real time. It of-

fers a messaging middleware for information exchange (e.g. text messages

from third party users to end users).

5. Performance Evaluation

The experimental analysis focuses on the performance evaluation of services

belonging to the following categories:

• The IoT side that responds to the phases of data collection and data

pushing on the cloud.

• The back-end cloud system which in turn, includes (a) services for data

storage in the NoSQL database and (b) services related with context and

event management.

5.1. IoT Side System Evaluation

To measure the effectiveness of the front-end system we compute the times

required for data to be transmitted from the IoT side to the back-end cloud

system (HTTP request/response times). Each transmission phase includes a

number of interacting sub-phases such as BLE device discovery, data collection,

local storage and data forwarding to the back-end. For this experiment, we use

37



the Polar H7 to measure the heart rate pulses and the Nonin Onyx (device 3250)

to measure oxygen saturation levels and heart rate pulses. The experimental

configuration includes (a) sensor data collection on 1 second interval, (b) average

over 100 user’s transmission phase executions and (c) use of SQLite database

for local storage on the gateway. The results of this experiment are summarized

below:

• The process on a gateway starts with the “user registration” method,

where the system registers a new person. For each registration, data is

sent to the cloud (including user identification and other details). This

action requires 230ms on the average.

• A request to the back-end storage requires an average of 145ms.

• Local storage actions are quite fast (4ms) and includes accessing the smart-

phone SQLite database for temporary storage of sensor data.

• Each time a new sensor measurement is produced, it is evaluated according

to the rule-based system, so violated thresholds can be captured. This

process requires 275ms.

• The IoT service includes data encoding to a JSON like information model

(2ms).

• Data streams are then send to the cloud (125ms).

• The time for data stream transmission to the cloud takes 130ms. However,

in cases of messages using the GSM service, an extra 400ms are spent.

The iTaaS mobile application runs on an ordinary Android smartphone (An-

droid 5.1 ARM Quad-Core CPU 2.2GHz, 2GM RAM, 32GB Flash storage)

consuming less than 20% of the CPU time and 100MB RAM.

5.2. Back-end System Evaluation

We run an exhaustive set of experiments and we analyze the performance

limits of the services running on the cloud. We study system scalability (i.e.

38



how system response time increases with the number of connected users). All

services run on the same VM (core VM), with the exception of the Publish/Sub-

scribe Orion Context Broker that runs on a separate (second) VM, the JSON

storage service (MongoDB database) that runs on a third VM and, the Identi-

fication – Authorization service (Keyrock Identity Management) that runs on

a fourth VM. Therefore, the cloud back-end runs on four VMs. The Identity

Management service is not expected to cause any performance bottlenecks as

it is addressed only once by each user at login. Therefore, in the experiments

below, the time for system login is not taken into account. However, all other

VMs may receive up to a large number of simultaneous requests as the number

of users and their requests increase. All measurements of time below account

also for the time spent for the communication between VMs or between services

within the same VM.

All VMs, with the exception of Orion Context Broker that runs on a shared

VM and is installed on a remote FIWARE node (FIWARE is a federation of

distributed cloud infrastructures), are hosted on the FIWARE node of TUC and

have the following features: One virtual processor (x86 64 processor architec-

ture, 2,800 Mhz, first level cache size 32 KB, second layer 4,096 KB cache size),

2,048 MB RAM, 20 GB hard drive capacity. Each VM runs Ubuntu Operat-

ing System 14.04 and Apache HTTP server. The computational resource usage

metrics are taken using the Linux htop command58.

We execute the following actions:

• HTTP POST to storage service in order to save data to the database.

These are data related with the management of rules associated with users

and their sensors. An example dataset includes the creation of a new rule

for heart rate thresholds.

• HTTP PUT to the JSON storage service in order to update data related

58https://www.howtogeek.com/howto/ubuntu/using-htop-to-monitor-system-processes-

on-linux/

39



with rules. An example is the update process of the heart rate thresholds.

• Data management based on context/content for data distribution on third

party users. This includes content collection per sensor data in order to

allow other users to be subscribed on their context. An example includes

the subscription of the medical personnel to the heart rate measurements

of a particular patient.

• HTTP POST to Event service in order to evaluate patient measurements

(i.e. check if the sensor measurements are in the permissible range). It

accesses the database where the rules are stored. As a result, it sets new

status for the patient.

• HTTP PUT to Event service. It is similar to above. As a result, it updates

the status of a patient.

Table 2 shows the HTTP request/response time for the above calls in mil-

liseconds (that reflect the service completion time). It should be mentioned that

we observed a delay in the JSON storage when new rules are created per user.

Table 2: Completion time of service execution for different requests in the back-end

Type of request JSON

storage

(POST)

JSON

storage

(PUT)

Publish -

Subscribe

Event

Service

(PUT)

Event

Service

(POST)

Time / request 670ms 400ms 420ms 430ms 695ms

The purpose of the following experiment is to measure the performance of

the core VM. We used ApacheBench59 to issue multiple simultaneous requests

to the core VM. In ApacheBench we are opted to define the total number of

requests and how many of them will be executed simultaneously. Table 3 shows

59https://httpd.apache.org/docs/2.2/en/programs/ab.html

40



the results of this experiment. All measurements of time below account also for

the time spent for the communication between VMs or between services within

the same VM.

Table 3: Core VM response time and resource usage for 2,000 requests

Concurrency 1 40 80

Time (ms) 1.08ms 1.38ms 6.80ms

CPU usage (%) 30% 60% 95%

RAM usage (MB) 130MB 180MB 350MB

We notice a very low resource usage when concurrency = 1. This is expected,

as only one request is executed at any time. Response times improve drastically

with the simultaneous execution of 40 requests (i.e. the Apache HTTP server

switches to multitasking). Processing capacities may increase exponentially

or raise restrictions for space or bandwidth for concurrency > 80. The best

values are obtained with concurrency = 40, hence we conclude that the system

optimal performance is on around 40 concurrent users based on this OpenStack

configuration.

iTaaS may produce big amounts of data and requests, requiring large pro-

cessing capabilities, which may surpass the capacities that our experimental

system set-up is able to provide. In this set-up, most iTaaS core services are

implemented in a single VM thus overloading the VM when the number of con-

current service requests exceeds a limit. An obvious solution to dealing with

performance would be to employee additional VMs each running a single ser-

vice (or a small group of services). Alongside, we can allocate additional VMs

implementing the same service (or groups of services) thus having more than

on VM sharing the load. In all measurements above, the performance of the

mobile device is not taken into account.

41



6. Conclusions and Future Work

Recent developments in the area of smart and wearable sensors, make cloud,

Internet of Things (IoT) and big data processing the cutting-edge technologies

of this time. These highlight new requirements, such as real time data collec-

tion, on-the-fly big data storage and analytics that current systems are unable

to support, mainly because of the need for increased scalability. As an extra

feature data can be collected from low cost and affordable sensors that support

low energy consumption rates. Hollistic approaches based on the integration of

recent technological advances in sensors, protocols and showing seamless inte-

gration of recent edge, cloud technologies and platforms are still missing. iTaaS

is a contribution towards this direction.

This work introduces iTaaS reference architecture and its implementation

showing proof of concept in a remote health monitoring scenario. iTaaS is a two-

fold solution, based on micro-services for the IoT (users’ smart devices) and the

cloud side (that includes back-end services). Building upon principles of Service

Oriented Architectures (SOA) design and driven by the key requirements of

today’s IoT systems for adaptability, low-cost and scalability, iTaaS architecture

is modular and expandable.

The iTaaS framework supports optimal sensor data handling exhibiting low

bandwidth usage which includes data filtering (for reducing communication

overhead), local data caching for processing data locally, postponed data up-

loading for handling situations of poor or no bandwidth connection and, finally

synchronization with data on the cloud. It supports universal usage over BLE

sensors; BLE sensors can attached easily (on the fly) to any mobile device (run-

ning the gateway services) with automatic sensor discovery and coupling with

the gateway. It is dynamic as captured data streamed to the cloud back-end sys-

tem in real time and allows for decoupling the system functionality into the front

and the back-end (a mobile device / gateway and the cloud respectively). iTaaS

framework is therefore generic allowing easy adaptation to any IoT scenario.

iTaaS framework provide assurances of security, privacy, scalability, and re-

42



liability at both its cloud and IoT components. iTaaS enables the engineering of

reliable and secure coaching systems able to respond to dynamic and complex

situations. iTaaS service framework will support health monitoring solutions

both, both indoor and outdoor. Its ambition is to increase acceptance of the

technology solutions by the older adults and people with minimum exposure to

technology as all communication with the system is via user friendly interfaces

and other effective communication means (e.g. instructions by narration and

iconic interfaces).

The future research direction is the definition of patterns to specific sen-

sor data, in order to allow users to be notified according to different patterns

and not only static conditions and thresholds. Extending iTaaS framework to

support emerging service provision models dictated by the adoption of new gen-

eration telecommunication protocols (5G and LPWAN respectively) as well as

implementation of an inter-operable Semantic Web of Things IoT feamework,

are challenging directions for future research.

Appendix

The next XML file shows registrations of two devices used widely in the

market (the Nonin Onix and the Polar H7).

<? xml ve r s i on = ‘ ‘1 .0” encoding= ‘ ‘UTF−8” ?>

<sensor s>

<dev i c e name= ‘ ‘NoninOnix ’ ’>

<uuid id = ‘ ‘0 aad7ea0−0d60−11e2−8e3c−0002a5d5c51b”>

<va lue s name= ‘ ‘SPO2” type=\ ‘ ‘%’ ’>

<format>FORMAT UINT8</format>

<pos i t i on >7</pos i t i on>

<multi>1</multi>

</values>

<va lue s name= ‘ ‘ pulse Rate ’ ’ type= ‘ ‘bpm’ ’ p i c t u r e=”1”>

<format>FORMAT UINT8</format>

43



<pos i t i on > [8 ,9]</ pos i t i on>

<multi > [256 ,1]</multi>

</values>

</uuid>

</device>

<dev i c e name= ‘ ‘ Polar H7”>

<uuid id = ‘ ‘00002 a37−0000−1000−8000−00805 f9b34 fb”>

<va lue s name= ‘ ‘ pulse Rate ’ ’ type= ‘ ‘bpm”>

<format>FORMAT UINT8</format>

<pos i t i on >1</pos i t i on>

<multi>1</multi>

</values>

</uuid>

</device>

</sensor s>

References

[1] K. Bouchard, B. Bouchard, A. Bouzouane, Spatial recogni-

tion of activities for cognitive assistance: Realistic scenarios us-

ing clinical data from alzheimer?s patients, Journal of Ambi-

ent Intelligence and Humanized Computing 5 (5) (2014) 759–774.

doi:https://doi.org/10.1007/s12652-013-0205-8.

[2] S. Balabanis, S. Sotiriadis, E. Petrakis, Internet of things platform

in cloud computing for enhanced living, Cloud Computing for En-

hanced Living Environments: Algorithms, Architectures and Plat-

forms (Cloud4ELE), IEEE Cloud Computing 3 (6) (2016) 28–34.

doi:http://doi.ieeecomputersociety.org/10.1109/MCC.2016.128.

[3] L. Xu, W. He, S. Li, Internet of things in industries: A survey,

44

http://dx.doi.org/https://doi.org/10.1007/s12652-013-0205-8
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCC.2016.128


IEEE Transactions on Industrial Informatics 10 (4) (2014) 2233–2243.

doi:10.1109/TII.2014.2300753.

[4] McKinsey, Company, The internet of things: Mapping the value beyond the hype

(Jun. 2015).

URL http://fognetworks.org/news/McKinsey-report/

[5] A. R. Biswas, R. Giaffreda, Iot and cloud convergence: Opportunities and

challenges, in: IEEE World Forum on Internet of Things (WF-IoT), Seoul,

South Korea, 2014, pp. 375–376. doi:10.1109/WF-IoT.2014.6803194.

[6] M. P. Andersen, G. Fierro, D. E. Culler, Enabling synergy in iot: Platform

to service and beyond, in: IEEE First International Conference on Internet-

of-Things Design and Implementation (IoTDI), Berlin, Germany, 2016, pp.

1–12. doi:10.1109/IoTDI.2015.45.

[7] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: State-of-the-art and

research challenges, Journal of Internet Services and Applications 1 (1)

(2010) 7–18. doi:https://doi.org/10.1007/s13174-010-0007-6.

[8] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role

in the internet of things, in: Proceedings of the first edition of the MCC

workshop on Mobile cloud computing (MCC’12), Helsinki, Finland, 2012,

pp. 13–16. doi:10.1145/2342509.2342513.

[9] T. Erl, SOA Principles of Service Design, Prentice Hall, Upper Saddle

River, NJ, USA, 2007.

URL https://dl.acm.org/citation.cfm?id=1296147

[10] A. Bassi, M. Bauer, M. Fiedler, T. Kramp,

R. van Kranenburg, S. Lange, S. Meissner,

Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural Reference Model,

Springer, Heidelberg, 2013.

URL https://www.springer.com/gp/book/9783642404023

45

http://dx.doi.org/10.1109/TII.2014.2300753
http://fognetworks.org/news/McKinsey-report/
http://fognetworks.org/news/McKinsey-report/
http://dx.doi.org/10.1109/WF-IoT.2014.6803194
http://dx.doi.org/10.1109/IoTDI.2015.45
http://dx.doi.org/https://doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1145/2342509.2342513
https://dl.acm.org/citation.cfm?id=1296147
https://dl.acm.org/citation.cfm?id=1296147
https://www.springer.com/gp/book/9783642404023
https://www.springer.com/gp/book/9783642404023


[11] S. Sotiriadis, K. Stravoskoufos, E. Petrakis,

Future internet systems design and implementation, cloud and iot services based on iot-a and fiware,

in: V. Angelakis, E. Tragos, A. Kapovits, H. Poehls, A. Bassi (Eds.),

Designing, Developing and Facilitating Smart Cities: Urban Design to IoT

Solutions, Springer, 2017, Ch. 10, pp. 193–207.

URL https://www.springer.com/gp/book/9783319449227

[12] T. Soultanopoulos, S. S., P. E., C. Amza, Data management of

sensor signals for high bandwidth data streaming to the cloud, in:

IEEE Sarnoff Symposium, Newark, New Jersey, USA, 2016, pp. 53–58.

doi:10.1109/SARNOF.2016.7846764.

[13] P. Tsiachri-Renta, S. Sotiriadis, E. Petrakis, Healthcare sensor data man-

agement on the cloud, in: Workshop on Adaptive Resource Management

and Scheduling for Cloud Computing (ARMS-CC 2017), ACM Symposium

on Principles of Distributed Computing 2016 (PODC 2017), Washington,

DC, USA, 2017, pp. 25–30. doi:10.1145/3110355.3110359.

[14] T. Soultanopoulos, S. S., P. E. E., C. Amza, Internet of things data

management for bluetooth low energy (ble) devices, in: Workshop on

Adaptive Resource Management and Scheduling for Cloud Computing

(ARMS-CC 2016), ACM Symposium on Principles of Distributed Com-

puting 2016 (PODC 2016), Chicago, Illinois, USA, 2016, pp. 25–28.

doi:10.1145/2962564.2962568.

[15] F. Tao, Y. Cheng, L. D. Xu, L. Zhang, B. H. Li, Cciot-cmfg: Cloud

computing and internet of things-based cloud manufacturing service sys-

tem, IEEE Transactions on Industrial Informatics 10 (2) (2014) 435–1442.

doi:10.1109/TII.2014.2306383.

[16] F. Antonopoulos, S. Sotiriadis, E. Petrakis, N. Bessis, A physical ac-

cess control system on the cloud, in: International Conference on

Ambient Systems, Networks and Technologies (ANT 2018), Vol. Pro-

46

https://www.springer.com/gp/book/9783319449227
https://www.springer.com/gp/book/9783319449227
http://dx.doi.org/10.1109/SARNOF.2016.7846764
http://dx.doi.org/10.1145/3110355.3110359
http://dx.doi.org/10.1145/2962564.2962568
http://dx.doi.org/10.1109/TII.2014.2306383


cedia, Computer Science, 130, Porto, Portugal, 2018, pp. 318–325.

doi:https://doi.org/10.1016/j.procs.2018.04.045.

[17] C. Theummler, A. Paulin, A. Lim, Determinants of next gener-

ation e-health network and architecture specifications, in: IEEE

International Conference on e-Health Networking, Applications and

Services (HEALTHCOM 2016), Munich, Germany, 2016, pp. 1–6.

doi:10.1109/HealthCom.2016.7749460.

[18] B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu, F. Bu, Ubiquitous data access-

ing method in iot-based information system for emergency medical ser-

vices, IEEE Transactions on Industrial Informatics 10 (2) (2014) 1578–1586.

doi:10.1109/TII.2014.2306382.

[19] R. Nirmalya, A. Misra, D. Cook, Ambient and smartphone sensor as-

sisted adl recognition in multi-inhabitant smart environments, Journal

of Ambient Intelligence and Humanized Computing 7 (1) (2016) 1–19.

doi:dx.doi.org/10.1007/s12652-015-0294-7.

[20] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things

(iot): A vision, architectural elements, and future directions, Fu-

ture Generation Computer Systems (FGCS) 27 (7) (2013) 1645–1660.

doi:10.1016/j.future.2013.01.010.

[21] D. Miorandi, S. Sicari, F. D. Pellegrini, I. Chlamtac, Internet of things: Vi-

sion, applications and research challenges, Ad Hoc Networks 10 (7) (2012)

1497–01516. doi:https://doi.org/10.1016/j.adhoc.2012.02.016.

[22] A. Ciuffoletti, Occi-iot: An api to deploy and operate an iot infras-

tructure, IEEE Internet of Things Journal 4 (5) (2017) 1341–1348.

doi:10.1109/JIOT.2017.2734068.

[23] K. Douzis, S. Sotiriadis, E. Petrakis, C. Amza, Modu-

lar and generic iot management on the cloud, Future Gen-

47

http://dx.doi.org/https://doi.org/10.1016/j.procs.2018.04.045
http://dx.doi.org/10.1109/HealthCom.2016.7749460
http://dx.doi.org/10.1109/TII.2014.2306382
http://dx.doi.org/dx.doi.org/10.1007/s12652-015-0294-7
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/https://doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1109/JIOT.2017.2734068


eration Computer Systems (FGCS) 78 (1) (2018) 369–378.

doi:https://doi.org/10.1016/j.future.2016.05.041.

[24] A. Ikram, A. Anjum, R. Hill, N. Antonopoulos, S. S. L. Liu, Approach-

ing the internet of things (iot): A modelling, analysis and abstraction

framework, Concurrency and Computation: Practice and Experience 27 (8)

(2016) 1966–1984. doi:https://doi.org/10.1002/cpe.3131.

[25] T. Kobialka, R. Buyya, C. Leckie, R. Kotagiri, A sensor web middle-

ware with stateful services for heterogeneous sensor networks, in: Inter-

national Conference on Intelligent Sensors, Sensor Networks and Informa-

tion Processing (ISSNIP 2007), Melbourne, Australia, 2007, pp. 491–496.

doi:10.1109/ISSNIP.2007.4496892.

[26] O. A. W. Group, Openfog architecture overview (Feb. 2016).

URL https://www.openfogconsortium.org/wp-content/uploads/OpenFog-Architecture-Overview-

[27] S. Schreier, Modeling restful applications, in: ACM International Workshop

on RESTful Design (WS-REST?11), Hyderabad, India, 2011, pp. 15–21.

doi:10.1145/1967428.196743.

[28] C. Cecchinel, M. Jimenez, S. Mosser, M. Riveill, An architecture to sup-

port the collection of big data in the internet of things, in: IEEE World

Congress on Services (SERVICES), Anchorage, AK, USA, 2014, pp. 442–

449. doi:10.1109/SERVICES.2014.83.

[29] S. Guoqiang, C. Yanming, Z. Chao, Z. Yanxu, Design and implementa-

tion of a smart iot gateway, in: IEEE International Conference on Green

Computing and Communications and IEEE Internet of Things and IEEE

Cyber, Physical and Social Computing, Beijing, China, 2013, pp. 720–723.

doi:10.1109/GreenCom-iThings-CPSCom.2013.130.

[30] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, X. Yang, A survey

on the edge computing for the internet of things, IEEE Access 6 (2017)

6900–6919. doi:10.1109/ACCESS.2017.2778504.

48

http://dx.doi.org/https://doi.org/10.1016/j.future.2016.05.041
http://dx.doi.org/https://doi.org/10.1002/cpe.3131
http://dx.doi.org/10.1109/ISSNIP.2007.4496892
https://www.openfogconsortium.org/wp-content/uploads/OpenFog-Architecture-Overview-WP-2-2016.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog-Architecture-Overview-WP-2-2016.pdf
http://dx.doi.org/10.1145/1967428.196743
http://dx.doi.org/10.1109/SERVICES.2014.83
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.130
http://dx.doi.org/10.1109/ACCESS.2017.2778504


[31] A. E. Boualouache, O. Nouali, S. Moussaoui, A. Derder, A ble-based data

collection system for iot, in: International Conference on New Technologies

of Information and Communication (NTIC), Mila, Algeria, 2012, pp. 1–5.

doi:10.1109/NTIC.2015.7368748.

[32] A. Orsino, G. Araniti, L. Militano, J. Alonso-Zarate, A. Molinaro, A. Iera,

Energy efficient iot data collection in smart cities exploiting d2d commu-

nications, Sensors 18 (6). doi:10.3390/s16060836.

[33] L. Jian, L. D. Xu, H. Cai, Z. Jiang, F. Bu, B. Xu, An

iot-oriented data storage framework in cloud computing platform,

IEEE Transactions on Industrial Informatics 10 (2) (2014) 1443–1451.

doi:10.1109/TII.2014.2306384.

[34] T. Li, Y. Liu, Y. Tian, S. Shen, W. Mao, A storage solution for mas-

sive iot data based on nosql, in: IEEE International Conference on Green

Computing and Communications, Besancon, France, 2012, pp. 50–57.

doi:10.1109/GreenCom.2012.18.

[35] E. Bertino, K. Choo, D. Georgakopolous, S. Nepal, Internet of things (iot):

Smart and secure service delivery, ACM Transactions on Internet Technol-

ogy, Special Issue on Internet of Things (IoT): Smart and Secure Service

Delivery 16 (4) (2016) 22–22:7. doi:10.1145/3013520.

[36] A. Rousalis, S. Sotiriadis, E. Petrakis, Management of farm data on the

cloud, in: IEEE International Conference on Advanced Information Net-

working and Applications (IEEE AINA 2018), Cracow, Poland, 2018.

[37] X. Wang, W. Cheng, P. Mohapatra, T. Abdelzaher, From today’s

intranet of things to a future internet of things: A wireless and

mobility-related view, Wireless Communications 17 (6) (2010) 44–51.

doi:10.1109/MWC.2010.5675777.

[38] Cisc18, Cisco fog computing solutions: Unleash the power of the internet of things

49

http://dx.doi.org/10.1109/NTIC.2015.7368748
http://dx.doi.org/10.3390/s16060836
http://dx.doi.org/10.1109/TII.2014.2306384
http://dx.doi.org/10.1109/GreenCom.2012.18
http://dx.doi.org/10.1145/3013520
http://dx.doi.org/10.1109/MWC.2010.5675777
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-solutions.pdf


(2018).

URL https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-solutions.pdf

[39] D. Linthicum, Edge computing vs. fog computing: Definitions and enterprise uses

(2018).

URL https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-computing.html

[40] T. Garfinkel, M. Rosenblum, A virtual machine introspection-based architecture for intrusion detection,

in: Proceedings of Network and Distributed Systems Security Symposium,

2012, pp. 191–206.

URL https://suif.stanford.edu/papers/vmi-ndss03.pdf

[41] K. Nagaraj, C. Killian, J. Neville, Structured comparative analysis of sys-

tems logs to diagnose performance problems, in: Proceedings of the 9th

USENIX conference on Networked Systems (NDSI’12), San Jose, CA, USA,

2012, pp. 22–26.

[42] A. Bhattacharyya, S. Jandaghi, S. Sotiriadis, C. Amza, Semantic aware

online detection of resource anomalies on the cloud, in: IEEE CloudCom,

Helsinki, Finland, 2016, pp. 134–143. doi:10.1109/CloudCom.2016.0035.

[43] P. Massonet, S.Dupont, A. Michot, A. Levin, M.Villari, Enforcement

of global security policies in federated cloud networks with virtual net-

work functions, in: International Symposium on Network Computing

and Applications (NCA 2016), Cambridte, MA, USA, 2016, pp. 81–84.

doi:10.1109/NCA.2016.7778597.

[44] D. Guinard, V. Trifa, Building the Web of Things, Manning Publications

Co., Greenwich, CT, USA, 2016. doi:https://webofthings.org/book/.

URL https://dl.acm.org/citation.cfm?id=1296147

[45] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, K. Taylor,

Iot-lite: A lightweight semantic model for the internet of things and its use with dynamic semantics,

Personal and Ubiquitous Computing 21 (3) (2017) 475––487.

URL https://doi.org/10.1007/s00779-017-1010-8

50

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-solutions.pdf
https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-computing.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-computing.html
https://suif.stanford.edu/papers/vmi-ndss03.pdf
https://suif.stanford.edu/papers/vmi-ndss03.pdf
http://dx.doi.org/10.1109/CloudCom.2016.0035
http://dx.doi.org/10.1109/NCA.2016.7778597
https://dl.acm.org/citation.cfm?id=1296147
http://dx.doi.org/https://webofthings.org/book/
https://dl.acm.org/citation.cfm?id=1296147
https://doi.org/10.1007/s00779-017-1010-8
https://doi.org/10.1007/s00779-017-1010-8


[46] M. Al-Osta, B. Ahmed, G. Abdelouahed,

A lightweight semantic web-based approach for data annotation on iot gateways,

in: Proceedings of the 8th International Conference on Emerging Ubiq-

uitous Systems and Pervasive Networks (EUSPN 2017) / The 7th

International Conference on Current and Future Trends of Information

and Communication Technologies in Healthcare (ICTH-2017) - Volume

113, 2017, pp. 186–193.

URL https://doi.org/10.1016/j.procs.2017.08.339

[47] W. Wang, S. De, R. Toenjes, A comprehensive ontology for knowledge rep-

resentation in the internet of things, in: Proceedings of IEEE 11th Interna-

tional Conference on Trust, Security and Privacy in Computing and Com-

munications, 2012, pp. 1793—-1798. doi:10.1109/TrustCom.2012.20.

[48] P. Barnaghi, M. Presser, Publishing linked sensor data, in: Proceedings of

the 3rd International Conference on Semantic Sensor Networks - Volume

668, SSN’10, 2010, pp. 1–16.

URL http://dl.acm.org/citation.cfm?id=2878789.2878790

[49] N. Le, M. Hossain, A. Islam, D.-Y. Kim, Y.-J. Choi, Y. Jang,

Survey of promising technologies for 5g networks (12 2016).

doi:10.1155/2016/2676589.

[50] N. Rozanski, E. E. Woods, Software Systems Architecture: Working With Stakeholders Using Viewpoints

Addison-Wesley Professional, 2005.

URL https://www.viewpoints-and-perspectives.info

51

https://doi.org/10.1016/j.procs.2017.08.339
https://doi.org/10.1016/j.procs.2017.08.339
http://dx.doi.org/10.1109/TrustCom.2012.20
http://dl.acm.org/citation.cfm?id=2878789.2878790
http://dl.acm.org/citation.cfm?id=2878789.2878790
http://dx.doi.org/10.1155/2016/2676589
https://www.viewpoints-and-perspectives.info
https://www.viewpoints-and-perspectives.info

	Introduction
	Related Work and Background
	Research Challenges
	Fog Computing
	Security
	Web of Things (WoT) - Semantic Web of Things (SWoT)
	Low Power Wide Area Network (LPWAN) Connectivity and 5G

	IoT as a Service (iTaaS) 
	Implementation
	IoT side services
	Back-End Cloud services
	Integrating IoT and Cloud services


	Performance Evaluation
	IoT Side System Evaluation
	Back-end System Evaluation

	Conclusions and Future Work

