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Abstract
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portfolio with respect to all possible indices constructed from a set

of individual components. The test statistics and the estimators are

computed using mixed integer programming methods. The results
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mal and that education by itself offers the best (optimal) indicator of
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1 Introduction

There exists a large literature that examines the distribution of certain at-

tributes such as income across countries using country level average data such

as per capital GDP taken as a proxy for the quality of life of individuals liv-

ing in different countries. However, the use of per capita income to evaluate

welfare improvements assumes that it reflects the level of economic welfare

enjoyed by the average person, see Becker, Philipson and Soares (2005). It is

also widely acknowledged that national income constitutes an imperfect mea-

sure of social well-being, see Easterlin (1995). For example, national income

includes expenditures affecting social well-being in a negative way ("regret-

table necessities") and ignores also the numerous components of well-being

such as the enjoyment of good health, of an unpolluted natural environment,

of leisure time and of political freedoms and rights, see Ponthiere (2004). Fur-

thermore, as argued by Quah (1996), it is not reasonable to give the same

weight to populous countries such as China or India and to countries with

small populations. Another problem with using country level per capita aver-

ages is that it is assumed implicitly that each person in a country receives the

same level of the attribute in question (in this case income). Given the uneven

distribution of most attributes within each country, this practice causes sub-

stantial biases in the estimation of global welfare indices that depend on the

distribution of the attributes, such as inequality or poverty indices. The past

decade has seen some work that tried to estimate the distribution of some

attributes of the world population. Different weights are given to different

countries. More importantly, the distributions within each country are also

considered by using summary statistics of various quantiles with each coun-

try. For example, see Bourguignon and Morrisson (2002) and Sala-I-Martin

(2006) on world income distribution, and Bourguignon and Morrisson (2002)

and Pradhan et al. (2003) on world health distribution.

A recent development in welfare economics is the increasing emphasis on

multivariate analysis, see Maasoumi (1999) for an overview of multidimen-
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sional welfare analysis. It has been recognized that welfare analysis based

on a single attribute is inadequate. An alternative basic needs approach

contends that individual well-being and social welfare depends on the joint

distribution of various attributes, such as income, health and education. Tra-

ditionally, the welfare analysis of multiple attributes are often undertaken by

examining each individual attribute separately. Obviously, this approach

fails to account for any relationships between various attributes. Alterna-

tively, another popular method is to construct a single welfare index as an

aggregate of multiple indices by single attributes. In this category we have

the United Nation’s Human Development Index (HDI), which is the arith-

metic average of an income index, an education index and a health index and

different versions of and the Human Poverty Index (HPI).

The HDI is a summary composite index that measures a countries average

achievements in three basic aspects of human development: longevity, knowl-

edge and a decent standard of living using fixed equal weights. Longevity is

measured by life expectancy at birth; knowledge is measured by a combi-

nation of the adult literacy rate and the combined primary, secondary and

tertiary gross enrollment ratio and standard of living by GDP per capita. The

HPI is a measure that attempts to capture the many dimensions of poverty

that exist in both poor and rich countries relying on fixed equal weights as

well. The HPI-1-human poverty index for developing countries-measures hu-

man deprivations in the same three categories as HDI (longevity, knowledge

and a decent standard of living). HPI-2 -human poverty index for selected

high-income OECD countries-includes in addition to the three dimensions in

HPI-1, social exclusion. A serious shortcoming is that the construction of

all of the above hybrid measures as in the case of the separate analysis of

single attributes, ignores the association among the various attributes. For

example, suppose there exists a simple economy with two individuals each en-

dowed with two attributes X and Y . Consider two scenarios. The first one is

[X1 = 2,X2 = 1] and [Y1 = 1, Y2 = 2], while the second one [X1 = 2,X2 = 1]

and [Y1 = 2, Y2 = 1]. Since the marginal distributions of X and Y are identi-
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cal between the two scenarios, any “hybrid” index that fails to accounts for

the dependence between two marginal distributions will conclude that the

two scenarios share the same level of welfare.

In order to examine the optimality of the fixed equal weighting scheme

in the construction of the HDI Index, we first examine the stochastic domi-

nance of the HDI index over a twenty five year period and determine which

factors drive its improvement over time. In order to look for stochastic domi-

nance over time, we rely on Kolmogorov-Smirnov type tests developed within

a consistent testing environment developed by Barrett and Donald (2003),

hereafter BD. We use this framework to test for stochastic dominance of

HDI and its individual components over a 25 year period. This offers a gen-

eralization to Anderson (1996), Beach and Davidson (1983), Davidson and

Duclos (2000) who have looked at second order stochastic dominance using

tests that rely on pair-wise comparisons made at a fixed number of arbitrary

chosen points. This is not a desirable feature since it introduces the possi-

bility of test inconsistency. Davidson and Duclos (2000) have discussed the

importance of first, second and third order stochastic dominance concepts

(SD1, SD2, and SD3 respectively) between income distributions for social

welfare and poverty rankings of distributions. Ravallion (1994) called the

SD1 a poverty incidence curve, that of SD2 a poverty deficit curve, and that

of SD3 a poverty severity curve. In an important similar application to opti-

mal portfolio construction, Scaillet and Topaloglou (2006), hereafter ST, use

stochastic dominance efficiency tests that can compare a given portfolio with

an optimal diversified portfolio constructed from a set of assets. In our case

we follow the same methodology, using the set of attributes (in our case per

capita income, life expectancy and a measure of human capital) to construct

the optimal hybrid index, that does not rely on fixed weights as HDI does.

The remainder of the paper as follows. In section 2, we examine the

main framework of analysis, we define the notions of stochastic dominance

efficiency and we discuss the general hypothesis for stochastic dominance at

any order. We follow BD to describe the test statistics and its asymptotic
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properties. Following BD and ST, in section 3, we describe two practical

ways to compute p-values for testing stochastic dominance at any order by

looking at bootstrap methods and discuss the theoretical justification for

the methods. Section 4 looks at the data and offers descriptive statistics,

whereas in Section 5, we examine the empirical application of these methods

on HDI and its components — education, longevity and standard of living —

over twenty five years (1975, 1980, 1985, 1990, 1995 and 2000). In section 6,

we use the ST methodology to ascertain whether the HDI index is optimally

constructed using equal weights, or whether we can obtain an alternative

portfolio with optimal weights for the different constituent components of the

index. We provide the empirical application of ST tests and give the optimal

portfolio for HDI index. Section 7 concludes and the appendix describes

some of the details of the BD approach.

2 Hypothesis, Test Statistic and Asymptotic

Properties

2.1 Stochastic Dominance and Hypothesis Formula-
tion

We focus on a situation in which we have independent samples of indices

from two populations that have associated cumulative distribution functions

(CDFs) given byG and F . First order stochastic dominance (hereafter SD1)

of G over F corresponds to G(z) ≤ F (z) for all z. When this occurs social

welfare in the population summarized byG is at least as large as that in the F

population for any social welfare function of the formW (H) =
R
U(z)dH(z)

whereH is the distribution of HDI index or its components (education index,

longevity index and GDP index) and U is any increasing monotonic function

of z− i.e. Ú(z) ≥ 0.The CDF of distribution F is always at least as large as

that of distribution G, i.e. distribution F always has more mass in the lower
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part of distribution.

How is this related to HDI index dominance? Suppose we have n countries

in total. If the CDF of HDI in 1975, F (z), is always at least as large as that

of the CDF in 1985, G(z) at any point, then the proportion of countries

below the particular index level, for year 1975 is higher than that of 1985.

Therefore, the 1985 HDI index stochastically dominates its 1975 counterpart

in the first order sense.

When the two CDF curves intersect, then the ranking is ambiguous. In

this situation we can not state whether one distribution first order dominates

the other. This leads to an ambiguous situation which makes it necessary to

use higher order stochastic dominance.

Second order stochastic dominance (SD2) of G over F corresponds toR z
0
G(t)dt ≤ R z

0
F (t)dt for all z and the social welfare in the population

summarized byG is at least as large as that in the F population for any social

welfare function of the formW (H), where U is monotonically increasing and

concave-that is Ú(z) ≥ 0 and Ú́(z) ≤ 0. Second order stochastic dominance is
verified, not by comparing theCDFs themselves, but comparing the integrals

below them. We examine the area below the F (z) and G(z) curves. Given

lower and upper boundary levels, we determine the area beneath the curves

and, if the area beneath the F (z) distribution is larger than the one of G(z),

then in this case G(z) stochastically dominates F (z) in second order sense.

Since we look at the area under the distributions, second order dominance

implies simply an overall improvement and not a point-wise dominance over

all the points of the support of one distribution over another.

There is no guarantee that the second order dominance will hold, so one

may want to look for third order dominance. Third order stochastic dom-

inance (SD3) of G over F corresponds to
R z
0

R s
0
G(t)dtds ≤ R z

0

R s
0
F (t)dtds

for all z and the social welfare in the population summarized by G is at least

as large as that in the F population for any social welfare function of the

formW (H) where U satisfies Ú(z) ≥ 0, Ú́(z) ≤ 0, and Ú́́(z) ≥ 0. This is the
case of third-order stochastic dominance and it is equivalent to imposing the
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condition that it places a higher weight on lower levels of indices.

We will use integral operator in order to show different orders of stochastic

dominance, ζj(.;G), that integrates the function G to order j − 1.
ζ1(z;G) = G(z),

ζ2(z;G) =
R z
0
G(t)dt =

R z
0
ζ1(t;G)dt,

ζ3(z;G) =
R z
0

R s
0
G(s)dsdt =

R z
0
ζ2(t;G)dt,

and so on.

Following BD, we need the following assumptions:

Assumption 1: Assume that:
(i) F and G have common support [0, z] where z ≺ ∞;
(ii) F and G are continuous function on [0, z] .

These assumptions are required, since the multiple integrals of CDFs

will be infinitely large in their absence for j ≥ 2.
Given the assumptions above, the general hypotheses for testing stochas-

tic dominance of order j can be written compactly as:

Hj
0 : ζj(z;G) ≤ ζj(z;F ) for all z ∈ [0, z] ,

Hj
1 : ζj(z;G) Â ζj(z;F ) for some z ∈ [0, z] .

Weak stochastic dominance of any order of G over F implies that G is no

larger than at any point of indices (e.g. when we compare 1975 HDI index to

1980 HDI index, if 1980 HDI Index CDF is no larger than 1975 HDI Index).

The alternative hypothesis is the converse of the null and implies that there

is at least some index value at which G (or its integral) is strictly larger than

F (or its integral). In other words stochastic dominance fails at some point

for G over F . In order to look F dominance over G, then we can reverse the

roles they play in the hypotheses and redoing the tests.

2.2 Test Statistics and Asymptotic Distributions

We have independent samples from the two distributions (e.g. for HDI in

1975 and 1980). In order to allow for different sample sizes we need to make

assumptions about the way in which sample sizes grow.
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Assumption 2:
(i) {Xi}Ni=1 and {Yi}Mi=1are independent random samples from distri-

butions with CDF 0s F and G respectively;

(ii) sampling scheme is such that as N,M −→ ∞, N
N+M

= φ where

0 ≺ φ ≺ 1.
Assumption 2(i) deals with the sampling scheme and would be satisfied if

one had samples of indices from different segments of a population or separate

samples across time. Assumption 2(ii) implies that the ratio of the sample

sizes is finite and bounded away from zero.

The empirical distributions used to construct the tests are respectively,bFN(z) =
1
N

NX
i=1

1(Xi ≤ z), bGM(z) =
1
M

MX
i=1

1(Yi ≤ z).

The test statistics for testing the hypotheses can be written compactly as

follows:bSj = ¡ NM
N+M

¢1/2
sup
z
(ζj(z; bGM)− (ζj(z; bFN)).

Since ζj is a linear operator, then

ζj(z; bFN) =
1

N

NX
i=1

ζj(z; 1Xi) =
1

N

NX
i=1

1

(j − 1)!1(Xi ≤ z)(z −Xi)
j−1 (2.1)

1Xidenotes the function 1(Xi ≤ x),see Davidson and Duclos (2000).

The limiting distributions of the test statistics under the null hypothesis

can be characterized using the fact that√
N( bFN − F ) =⇒BF ◦ F,

√
M( bGM −G) =⇒BG ◦G

where BF ◦ F and BG ◦G are independent Brownian Bridge process.

BD (2003) obtain the characterizing behavior of the test statistics and

derive the asymptotic properties of the process that involves integrals of the

Brownian Bridges under their Lemma 1 (see the appendix).

We consider tests based on decision rule:

”reject Hj
0 if bSj Â cj”
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where cj are suitably chosen critical values to be obtained by simulation

methods.

In order to make the result operational, we need to find an appropriate

critical value cj to satisfy P (S
F

j Â cj) ≡ α or P (S
G,F

j Â cj) ≡ α (some

desired probability level such as 0.05 or 0.01). Since the distribution of the

test statistic depends on the underlying distribution, this is not an easy

task, and we decide hereafter to rely on bootstrap methods to simulate the

p-values.

3 Simulating p-values

3.1 Bootstrap Methods

We provide bootstrap methods based on Proposition A.1(i) and A.1(ii). In

this case we define sample as χ = {X1, ....,XN} and compute the distribution
of the random quantity

S
F

j =
√
Nsup

z
(ζj(z; bF ∗N)− ζj(z; bFN)) (3.1)

where

bF ∗N(z) = 1

N

NX
i=1

(X∗
i ≤ z)

for a random sample ofX∗
i drawn from χ.To simulate the random variable

corresponding to S
F,G

j from Proposition A.1(ii), we use Van der Vaart and

Wellner (1996) and resample the combined samples: Z = {X1, ...,XN , Y1, ..., YM}.
Let bG∗M denote the empirical CDF of a random sample of size M from Z

and let bF ∗N denote the empirical CDF of a random sample of size N from Z.

Then we can compute the distribution of a random quantity
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S
F,G

j,1 =

r
NM

N +M
sup
z
(ζj(z; bG∗M)− ζj(z; bFN)). (3.2)

Let γ = {Y1, ..., YM}. Third method of bootstrapping can be done by
drawing sample size of N from χ (with replacement) to construct an estimate

of bF ∗N and drawing samples of sizeM from γ to construct an estimate of bG∗M ,
so we can compute the statistic

S
F,G

j,2 =

r
NM

N +M
sup
z
((ζj(z; bG∗M)− ζj(z; bGM))− (ζj(z; bF ∗N)− ζj(z; bFN))).

(3.3)

For each case we can do Monte Carlo simulation to simulate the p-values.

We can denote the p-values by the notion epFj , epF,Gj,1 , epF,Gj,2 respectively.

Proposition 1: Assuming that α ≺ 1
2
, a test for SDj based on either

rule:

“reject Hj
0 if epFj ≺ α,”

“reject Hj
0 if epF,Gj,1 ≺ α,”

“reject Hj
0 if epF,Gj,2 ≺ α,”

satisfies the following:

limP (reject Hj
0) ≤ α if Hj

0 is true,

limP (reject Hj
0) = 1 if H

j
1 is true.

The importance of the BD methodology is that it can be applied to dif-

ferent sample sizes over time and even for small sample sizes (e.g. sample

size of 50) the power is quite good. In the following section, we provide the

empirical results for the HDI index and its components from 1975 to 2000 in

5-year increments.

4 Data and Descriptive Statistics

We use United Nations Development Program’s HDI index and its compo-

nents - life expectancy, education and GDP indices for the period 1975 to
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2000 in 5-year increments. Each index ranges between 0 and 1 (from lowest

to highest well being). HDI index represents the simple arithmetic average

of the three individual indices:

Life expectancy index = LE−25
85−25 ,where the value 85 years gives a life ex-

pectancy of 1 and the value of 25 gives a value of 0.

Education index= 2
3
(adult literacy index) + 1

3
(gross enrollment index).

The education index measures country’s achievement in both adult lit-

eracy rate and combined primary, secondary and tertiary gross enrolment

rate.

GDP Index=log (GDP per capita) - log (100)
log (40,000)-log (100) .

Table 1 presents the descriptive statistics for the overall HDI and the

individual component indices over time.

One can see that the HDI index improved over time, as did expectancy

and especially education, whereas the GDP per capita index remained almost

unchanged same between 1980 and 1995, and the index dropped from 1980 to

1985. We see that the education index increased significantly over this time

period without any drop, while the life expectancy index remained steady

after 1990. This is mainly because of the drop in life expectancy in Africa.

In next the section we will examine the stochastic dominance results for these

indices.

5 Results for Stochastic Dominance Tests

We will provide the results of Kolmogorov-Smirnov tests that are based on

simulation and bootstrap methods from BD (2003) for stochastic dominance

over time for HDI and its components separately. KS1 and KS2 come from

(3.2) and (3.3); KSB1, KSB2 and KSB3 come from (3.6), (3.7) and (3.8)

respectively. Tables 2i to 2iv present the results for first, second and third

stochastic dominance over the period under investigation for HDI and its

components: education, life expectancy and GDP index respectively. The
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vertical column represents the years from 1980 to 2000 that are tested for

stochastic dominance against years from 1975 to 1995. Percentage levels in

the table represent the significance level of stochastic dominance (e.g. for

Table 2i (HDI): 1980 year HDI stochastically dominates the 1975 year in the

second and third order sense at the 10 percent level).

Since each component of HDI index uses a fixed weight of one-third to

determine the overall HDI, stochastic dominance of HDI over time is driven

by stochastic dominance of the individual HDI components (education in-

dex, life expectancy index and GDP index). GDP index shows no significant

improvement for the whole period between 1975 and 2000. Only the 2000

GDP Index dominates the 1975 GDP Index in both second order and third

order sense. The education index in 1985, 1990, 1995 and 2000 dominates

the education index in 1975, 1980, 1985 and 1990 in first, second and third

order sense respectively (10-year periods). In this case, every country’s stock

of educational knowledge increased within 10 years. On the other side edu-

cation index in 1980, 1990 and 2000 dominates the education index in 1975,

1985 and 1995 in second and third order sense (5-year periods). Finally, the

life expectancy index in 1985 and 1990 dominates 1975 and 1980 in first,

second and third order sense respectively (10 year periods). However life

expectancy index in 1995 dominates 1985 in first and second order sense and

2000 dominates 1990 in first order only, whereas 1980 index dominates 1975

index in second and third order sense (5-year period). One can see that first

order dominance occurs in life expectancy in a span of 10 years.

The overall HDI in 1985 and 1990 dominates the HDI in 1975 and 1980 in

both second and third order sense respectively. HDI Index in 1995 and 2000

dominates the HDI index in 1985 and 1990 in first and second order sense

respectively (10 year periods), while the 1980 index dominates the 1975 year

index in second and third order sense (5-year period).

It becomes apparent that improvements in HDI index over time are driven

by the improvements in education and life expectancy. However, the improve-

ment in education index occurs in second and third order sense in 5-year pe-
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riods which means that the overall improvement is driven by the education

index in a shorter time span.

6 Tests of the optimality of the HDI index

We consider a strictly stationary process {Y t; t ∈ Z} taking values in Rn.

The observations consist in a realization of {Y t; t = 1, ..., T}. These data
correspond to observed values of n different constituent components of the

HDI index (τ ). We denote by F (y), the continuous cdf of Y = (Y1, ..., Yn)
0

at point y = (y1, ..., yn)0.
Let us consider a portfolio λ ∈ L where L := {λ ∈ Rn

+ : e
0λ = 1} with

e for a vector made of ones. This means that all the different components

have positive weight and that the portfolio weights sum to one. Let us

denote by G(z,λ;F ) the cdf of the portfolio value λ0Y at point z given by

G(z,λ;F ) :=

Z
Rn
I{λ0u ≤ z}dF (u).

The general hypotheses for testing the optimality of HDI index, hereafter

τ , can be written compactly as:

H0 :G(z, τ ;F ) ≤ G(z,λ;F )for all z ∈ R and for allλ ∈ L,
H1 :G(z, τ ;F ) > G(z,λ;F )for some z ∈ R or for someλ ∈ L.

The empirical counterpart to G is simply obtained by integrating with

respect to the empirical distribution F̂ of F .

We consider the weighted Kolmogorov-Smirnov type test statistic

Ŝ :=
√
T
1

T
sup
z,λ

h
G(z, τ ; F̂ )−G(z,λ; F̂ )

i
,
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6.1 Empirical application

The test statistic Ŝ is derived using mixed integer programming formulations.

The following is the full formulation of the model:

max
z,λ

Ŝ =
√
T
1

T

TX
t=1

(Lt −Wt) (6.1a)

s.t.M(Lt − 1) ≤ z − τ 0Y t ≤MLt, ∀ t (6.1b)

M(Wt − 1) ≤ z − λ0Y t ≤MWt, ∀ t (6.1c)

e0λ = 1, (6.1d)

λ ≥ 0, (6.1e)

Wt ∈ {0, 1}, Lt ∈ {0, 1}, ∀ t (6.1f)

with M being a large constant.

The model is a mixed integer program maximizing the distance between

the sum over all scenarios of two binary variables,
1

T

TX
t=1

Lt and
1

T

TX
t=1

Wt

which represent G(z, τ ; F̂ ) and G(z,λ; F̂ ), respectively (the empirical cdf of

τ and λ at point z). According to inequalities (6.1b), Lt equals 1 for each

scenario t ∈ T for which z ≥ τ 0Y t, and 0 otherwise. Analogously, inequalities

(6.1c) ensure thatWt equals 1 for each scenario for which z ≥ λ0Y t. Equation

(6.1d) defines the sum of all portfolio weights to be unity, while inequality

(6.1e) disallows for short positions in the available assets.

This formulation permits to test the dominance of the HDI index (τ ) over

any potential linear combination λ of the components.

When some of the variables are binary, corresponding to mixed integer

programming, the problem becomes NP-complete (non-polynomial, i.e., for-

mally intractable).

We reformulate the problem in order to reduce the solving time and to

obtain a tractable formulation. The steps are the following:

1) The factor
√
T/T can be left out in the objective function, since T is
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fixed.

2)We can see that there is a set of at most T values, sayR = {r1, r2, ..., rT},
containing the optimal value of the variable z.

Proof : Vectors τ and Y t, t = 1, ..., T being given, we can rank the values

of τ 0Y t, t = 1, ..., T , by increasing order. Let us call r1, ..., rT the possible

different values of τ 0Y t, with r1 < r2 < ... < rT (actually there may be less

than T different values). Now, for any z such that ri ≤ z ≤ ri+1,
X

t=1,...,T

Lt is

constant (it is equal to the number of t such that τ 0Y t ≤ ri). Further, when

ri ≤ z ≤ ri + 1, the maximum value of −
X

t=1,...,T

Wt is reached for z = ri.

Hence, we can restrict z to belong to the set R.
3) A direct consequence is that we can solve the original problem by

solving the smaller problems P (r), r ∈ R, in which z is fixed to r. Then

we take take the value for z that yields the best total result. The advantage

is that the optimal values of the Lt variables are known in P (r). Precisely,X
t=1,...,T

Lt is equal to the number of t such that τ 0Y t ≤ r. Hence problem

P (r) boils down to:

min
TX
t=1

Wt

s.t.M(Wt − 1) ≤ r − λ0Y t ≤MWt, ∀t ∈ T

e0λ = 1,

λ ≥ 0,
Wt ∈ {0, 1}, ∀t ∈ T. (6.2a)

Note that this becomes a minimization problem.

Problem P (r) amounts to find the largest set of constraints λ0Y t ≥ r

consistent with e0λ = 1 and λ ≥ 0.
Let Mt = min Y t,i, i = 1, ..., n, i.e., the smallest entry of vector Y t.
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Clearly, for all λ ≥ 0 such that e0λ = 1, we have that λ0Y t ≥Mt. Hence,

Problem P (r) can be rewritten in an even better reduced form:

min
TX
t=1

Wt

s.t.λ0Y t ≥ r − (r −Mt)Wt, ∀t ∈ T

e0λ = 1,

λ ≥ 0,
Wt ∈ {0, 1}, ∀t ∈ T. (6.3a)

We further simplify P (r) by fixing the following variables:

- for all t such that r ≤ Mt, the optimal value of Wt is equal to 0 since

the half space defined by the t-th inequality contains the simplex.

- for all t such that r ≥ Mt, the optimal value of Wt is equal to 1 since

the half space defined by the t-th inequality has an empty intersection with

the simplex.

6.2 Results

The computational time for this mixed integer programming formulation is

large. For the optimal solution (which involves 1264 mixed integer optimiza-

tion programs, one for each discrete value of z) it takes less than two days.

The problems are optimized with IBM’s OSL solver on an IBM workstation

(with a 2*2.4 GHz Power, 6Gb of RAM). We note the almost exponential in-

crease in solution time with the increasing number of observations. We stress

here the computational burden that is managed for these tests. The opti-

mization problems are modelled in GAMS. The General Algebraic Modeling

System (GAMS) is a high-level modeling system for mathematical program-

ming and optimization. It consists of a language compiler and a stable of

integrated high-performance solvers. GAMS is tailored for complex, large
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scale modeling applications. OSL uses the branch and bound technique to

solve the MIP program.

We found that the HDI index is not optimal. We can construct many

other portfolios λ consisting of the three components of the HDI index (life

expectancy, educational attainment, and standard of living) that dominate

the HDI index, for which G(z, τ ;F ) > G(z,λ;F ). The greatest difference is

for portfolio λ = (0, 1, 0) at point z=0.90107.

Table 3 summarizes the results. In the first row we see the greatest

distance (0.04540) between the optimal portfolio λ and the HDI index, which

is achieved for z = 0.90717. Next, the Table presents the 20 portfolios closest

to the optimal. It is clear that the educational knowledge has the greatest

impact, since in all portfolios participates with more that 97%.

The above result suggests that using the fixed equal weight results in a

suboptimal index that is dominated by many other potential hybrids with

different weights. However, the most interesting result we obtain is that

using the education index alone would dominate any other index that uses

all three components. Educational knowledge has the greatest impact in the

construction of an optimal HDI index and it greatly dominates all the other

two components (with at least a 0.97 weight in the top 21 optimal hybrid

indices as seen in Table 3) That is consistent with Sen (1987), who makes

the distinction between welfare measures that are inputs such as education

and outputs such as health and/or income. Welfare comparisons based on

the former measures are preferable to the ones based on the latter.

7 Conclusion

In this paper we consider consistent tests for stochastic dominance effi-

ciency at dominance order. We consider consistent tests, that are similar

to Kolmogorov-Smirnov tests and use a variety of approaches to inference

based on simulation and the bootstrap. The empirical application to HDI

index and its components show that education and life expectancy indices are
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the main determining factor for the improvement in HDI index over years.

We show that the significant indices that has improved within 10-year peri-

ods are education index and life expectancy. Moreover, education index has

second and third order stochastic dominance within 5 year periods, which

means that not all countries have better education index, but there is an

overall improvement in educational knowledge in 5 year periods. GDP Index

has no significant improvement over 25 years.

Moreover and more importantly, when we consider consistent tests for

stochastic dominance efficiency at any order of a given hybrid index with re-

spect to all possible indices constructed from a set of individual components

we find that the fixed equal weighted HDI is not optimal and it is educa-

tional knowledge alone that has the greatest impact in the construction of

an optimal HDI.
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9 Appendix

Lemma 1: BD show that for j ≥ 2,√
N(ζj(.; bFN) − ζj(.;F )) =⇒ ζj(.;BF ◦ F ) in C([0, z]) where the limit

process is with mean zero and covariance kernel given by (for z2 Â z1)

Ωj(z1, z2, F ) = E(ζj(z1;BF ◦ F )ζj(z2;BF ◦ F ))

=

j−1X
l=0

θjl
1
l!
(z2 − z1)

lζ2j−l−1(z1;F )− ζj(z1;F )ζj(z2;F )

where

θjl =
¡
2j−l−2
j−1

¢
.

Note that this process also holds for G. Lemma 1 provides the covariance

kernel in terms of the coefficients θjl and the integration operators that is

useful in what follows.

We consider tests based on decision rule:

”reject Hj
0 if bSj Â cj”

where cj is some critical value that will be discussed in a moment.

The following result characterizes the properties of tests, where

S
F

j = sup
z
ζj(z;BF ◦ F )

S
G,F

j = sup
z
(
√
φζj(z;BG ◦G)−

√
1− φζj(z;BF ◦ F ))

Proposition A.1: Let cj be a positive finite constant, then:
A(i) if Hj

0 is true,

lim
N,M→∞

P (reject Hj
0) ≤ P (S

F

j Â cj) ≡ αF (cj)

with equality when F (z) = G(z) for all z ∈ [0, z] ;
A(ii) if Hj

0 is true,

lim
N,M→∞

P (reject Hj
0) ≤ P (S

G,F

j Â cj) ≡ αG,F (cj)

with equality when F (z) = G(z) for all z ∈ [0, z] ;
B if Hj

0 is false,

lim
N,M→∞

P (reject Hj
0) = 1.

The result provides a random variable that dominates the limiting ran-

dom variable corresponding to the test statistic under the null hypothesis.
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The inequality yield a test that will never reject more often than αF (cj) (re-

spectively αG,F (cj)) for any G satisfying the null hypothesis. As noted in the

result the probability of rejection will asymptotically be exactly αF (cj) when

F = G (αG,F (cj) respectively), and, moreover, αF (cj) = αG,F (cj) because of

the fact that S
G,F

j
d
= S

F

j .The results in A part implies that if one could find a

cj to set the αF (cj) (respectively αG,F (cj)) to some desired probability level

(say the conventional 0.05 or 0.01) then this would be the significance level

for composite null hypotheses in the sense described by Lehmann (1986).

The result in B part indicates that the test is capable of detecting any vio-

lation of the full set of restrictions of the null hypothesis. Of course, in order

to make the result operational, we need to find an appropriate critical value

cj to satisfy P (S
F

j Â cj) ≡ α or P (S
G,F

j Â cj) ≡ α. Since the distribution of

the test statistic depends on the underlying distribution, this is not an easy

task, and we rely on numerical simulation methods to simulate p-values such

as the bootstrap.
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Table 1: Data and Descriptive Statistics 

Table 1i: HDI index 
 1975 1980 1985 1990 1995 2000 
Sample 101 113 121 136 146 138 
Mean 0.5975 0.6345 0.6480 0.6719 0.6826 0.7006 
Median 0.6153 0.6606 0.6835 0.7082 0.7270 0.7409 
Std. 
Dev. 

0.1969 0.1886 0.1856 0.1831 0.1834 0.1818 

 

Table1ii: Education Index 
 1975 1980 1985 1990 1995 2000 
Sample 101 113 121 136 146 138 
Mean 0.5936 0.6393 0.6693 0.7089 0.7348 0.7643 
Median 0.6170 0.6845 0.7334 0.7799 0.8071 0.8317 
Std. 
Dev. 

0.2602 0.2392 0.2279 0.2171 0.2074 0.1958 

 

Table 1iii: Life Expectancy Index 
 1975 1980 1985 1990 1995 2000 
Sample 101 113 121 136 146 138 
Mean 0.5745 0.6171 0.6368 0.6600 0.6650 0.6734 
Median 0.5732 0.6300 0.6635 0.7121 0.7177 0.7411 
Std. 
Dev. 

0.1818 0.1736 0.1739 0.1752 0.1880 0.2011 

 

Table 1iv: GDP Index 
 1975 1980 1985 1990 1995 2000 
Sample 101 113 121 136 146 138 
Mean 0.6245 0.6472 0.6378 0.6469 0.6479 0.6642 
Median 0.6100 0.6421 0.6309 0.6435 0.6486 0.6623 
Std. 
Dev. 

0.1848 0.1832 0.1866 0.1898 0.1932 0.1960 

 

 

 

 

 

 



 

 

Table 2: Stochastic Dominance Results 

Table 2i: Stochastic Dominance Results for HDI index 
  1975 1980 1985 1990 1995 

1980 SD1 N/A - - - - 
 SD2 10% - - - - 
 SD3 10% - - - - 

1985 SD1 N/A N/A - - - 
 SD2 1-5% N/A - - - 
 SD3 1-5% N/A - - - 

1990 SD1 1% N/A N/A - - 
 SD2 1-5% 5-10% N/A - - 
 SD3 1-5% 5-10% N/A - - 

1995 SD1 1% 10% 10% N/A - 
 SD2 1% 5% 10% N/A - 
 SD3 1% 1-5% 10% N/A - 

2000 SD1 1% 5% 1% 10% N/A 
 SD2 1% 1% 1% 10% N/A 
 SD3 1% 1% 1-5% N/A N/A 

 

Table 2ii: Stochastic Dominance Results for Education Index 
  1975 1980 1985 1990 1995 

1980 SD1 N/A - - - - 
 SD2 10% - - - - 
 SD3 5-10% - - - - 

1985 SD1 5% N/A - - - 
 SD2 1-5% N/A - - - 
 SD3 1% N/A - - - 

1990 SD1 1% 10% N/A - - 
 SD2 1% 1% 5-10% - - 
 SD3 1% 1% 5-10% - - 

1995 SD1 1% 5% 5% N/A - 
 SD2 1% 1% 1% N/A - 
 SD3 1% 1% 1% N/A - 

2000 SD1 1% 1% 1% 5% N/A 
 SD2 1% 1% 1% 1-5% 10% 
 SD3 1% 1% 1% 1-5% 10% 

 

 

 



 

 

Table 2iii: Stochastic Dominance Results for Life Expectancy Index 
  1975 1980 1985 1990 1995 

1980 SD1 N/A - - - - 
 SD2 1-5% - - - - 
 SD3 5% - - - - 

1985 SD1 5% N/A - - - 
 SD2 1% N/A - - - 
 SD3 1% N/A - - - 

1990 SD1 1% 5% N/A - - 
 SD2 1% 1-5% N/A - - 
 SD3 1% 5-10% N/A - - 

1995 SD1 1% 1% 5% N/A - 
 SD2 1% 1-5% 10% N/A - 
 SD3 1% 10% N/A N/A - 

2000 SD1 1% 1% 5% 10% N/A 
 SD2 1% 1% 10% N/A N/A 
 SD3 1% 10% N/A N/A N/A 

 

Table 2iv: Stochastic Dominance Results for GDP index 
  1975 1980 1985 1990 1995 

1980 SD1 N/A - - - - 
 SD2 N/A - - - - 
 SD3 N/A - - - - 

1985 SD1 N/A N/A - - - 
 SD2 N/A N/A - - - 
 SD3 N/A N/A - - - 

1990 SD1 N/A N/A N/A - - 
 SD2 N/A N/A N/A - - 
 SD3 N/A N/A N/A - - 

1995 SD1 N/A N/A N/A N/A - 
 SD2 N/A N/A N/A N/A - 
 SD3 N/A N/A N/A N/A - 

2000 SD1 N/A N/A N/A N/A N/A 
 SD2 5-10% N/A N/A N/A N/A 
 SD3 10% N/A N/A N/A N/A 

 

 

 

 



 

 

Table 3: Optimal Portfolios for HDI index  
  Optimal Portfolio 

Distance z lexindex eduindex gdpindex 

0.04540 0.90717 0.00000 1.00000 0.00000 
0.04539 0.74382 0.00021 0.99979 0.00000 
0.04538 0.69882 0.00000 0.99965 0.00035 
0.04537 0.71781 0.00000 0.99957 0.00043 
0.04535 0.78122 0.00078 0.99922 0.00000 
0.04531 0.73016 0.00129 0.99871 0.00000 
0.04528 0.74890 0.00000 0.99825 0.00175 
0.04525 0.78005 0.00220 0.99780 0.00000 
0.04519 0.73529 0.00312 0.99688 0.00000 
0.04515 0.84347 0.00000 0.99633 0.00367 
0.04509 0.71036 0.00000 0.99550 0.00450 
0.04500 0.70385 0.00586 0.99414 0.00000 
0.04490 0.71098 0.00000 0.99266 0.00734 
0.04480 0.68633 0.00000 0.99112 0.00888 
0.04470 0.74293 0.01021 0.98979 0.00000 
0.04460 0.72715 0.01171 0.98829 0.00000 
0.04450 0.70816 0.00242 0.98682 0.01076 
0.04439 0.62463 0.01484 0.98516 0.00000 
0.04430 0.70862 0.00000 0.98379 0.01621 
0.04400 0.60209 0.01594 0.97939 0.00467 
0.04370 0.70088 0.01554 0.97502 0.00944 

Optimal portfolios of life expectancy (lexindex), educational 
attainment (eduindex) and standard of living (gdpindex) that 
dominate the fixed equal weighted HDI index. 

   

 

 

 

 

 

 


