
Edge Hill University

Role of Middleware in Improving

Reliability of Fog Applications

by

Hezekiah Yeng Samwini

A thesis submitted in partial fulfilment for the

degree of Doctor of Philosophy

in the

Department of Computer Science

Supervisory Team:

Prof Ella Pereira

Dr. Mohsin Raza

Dr. Umar Khan

June 2025

http://ljmu.ac.uk
https://www.edgehill.ac.uk/departments/academic/computerscience/

Declaration

The work presented in this thesis was carried out at the Department of Computer
Science, Edge Hill University. Unless otherwise stated, it is the original work of
the author.

While registered as a candidate for the degree of Doctor of Philosophy, for which
submission is now made, the author has not been registered as a candidate for
any other award. This thesis has not been submitted in whole, or in part, for any
other degree.

HEZEKIAH YENG SAMWINI

Department of Computer Science
Edge Hill University
St Helens Road
Ormskirk
L39 4QP
UK

June 2025

ii

Declaration of Authorship

I, HEZEKIAH YENG SAMWINI, declare that this thesis titled ‘THE ROLE OF
MIDDLEWARE IN IMPROVING RELIABILITY OF FOG APPLICATIONS’
and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research
degree at this University.

� Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated.

� Where I have consulted the published work of others, this is always clearly
attributed.

� Where I have quoted from the work of others, the source is always given.
Except for such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

iii

“A distributed system is one in which the failure of a computer you didnt even
know existed can render your own computer unusable.”

Leslie Lamport

Edge Hill University

Abstract
Department of Computer Science

Doctor of Philosophy

by Hezekiah Yeng Samwini

Fog computing extends cloud services to the network edge to address latency and
reliability challenges in modern applications. However, resource management in
fog environments remains a challenge due to heterogeneity and the dynamic nature
of fog nodes. While middleware has traditionally addressed similar challenges
in distributed computing, its application to fog computing resource management
has not been thoroughly explored. Therefore, this thesis proposes a middleware
approach to resource management in fog computing.

A novel adaptive middleware architecture employing the MAPE-K(Monitor, Anal-
yse, Plan, Execute over shared Knowledge) self-adaptation framework to dynami-
cally switch between clustered and peer-to-peer configurations based on conditions
in the environment. The middleware introduces: (1) a request handling algorithm
that implements multi-tier resource discovery across fog nodes, clusters, and cloud
layers with O(1) to O(S) complexity depending on service lookup implementa-
tion; (2) an Autonomous System-inspired clustering mechanism with dedicated
inter-cluster communication interfaces for cross-domain resource sharing; and (3)
a decentralised P2P bootstrapping algorithm for optimal peer selection based on
propagation delay and computational capacity.

The proposed solutions are evaluated through simulations using iFogSim and Om-
net++. Simulation experiments include processing over 3,500 IoT requests follow-
ing an exponential distribution with a mean inter-arrival time, λ = 100ms and
3-20 fog nodes to evaluate the performance of centralised and decentralised ar-
chitectures. The simulation results demonstrate improvements in response time,
network utilisation, and energy efficiency compared to traditional cloud-centric
and static/non-collaborative fog architectures. The results highlight the potential
of middleware in improving adaptability and reliability of fog computing.

This work’s key contributions are: (1) First middleware framework enabling both
clustered and P2P fog architectures with adaptive switching; (2) Novel inter-
cluster resource sharing mechanisms addressing the gap in fog clustering research;
(3) Comprehensive resource management framework integrating task offloading,
load balancing, and service discovery.

http://ljmu.ac.uk
https://www.edgehill.ac.uk/departments/academic/computerscience/

Acknowledgements

This work would not have been possible without the support of many individuals

whose help I deeply appreciate. I extend my sincere gratitude to everyone who

has assisted me in various ways throughout this research.

It has been a great pleasure working with the staff and students at Edge Hill

University during my time as a doctoral student. Producing this thesis would

not have been possible without the mentoring and support of Ella Pereira, my

director of studies. Her patience, kindness, and guidance have been invaluable

throughout this journey. I owe an outstanding debt of gratitude to Mohsin Raza,

my supervisor, whose invaluable feedback and insights taught me the importance

of taking the time to produce meaningful work and shaped this work. I also

thank Muhammad Awais for his support and mentorship during his time at Edge

Hill. Thanks to Umar Khan for his guidance especially in the final stages of

this work. This work would not have been possible without their feedback and

encouragement.

I am also grateful to all the staff (teaching and non-teaching) at the Department

of Computer Science for the assistance they provided throughout this research.

Thank you to Amr, Sally, Kaja, Mark and all the admin staff for all the work you

did for me related to conferences and other matters. I want to extend my sincere

thanks to Edge Hill University for granting me the opportunity to undertake this

studentship as a PhD student and Graduate Teaching Assistant.

To all those I shared Room-F09 with at different stages, especially Babatunde,

Paul, Aditya, and Reena, who have been with me the longest—thank you. I

benefitted greatly from our interactions. Thanks also to all the friends I made

during my time in Ormskirk, Mike Somervell and the wonderful people at Cottage

Lane Mission Church.

I am profoundly grateful to my close friends in the Brummie Navigators—Kim

and Insook, Joseph and Johanna, Dave, Sterling, and many others. Thank you so

much for your prayers, support, and encouraging words.

I am deeply grateful to my family and friends for their continuous support and

encouragement. I could not have achieved this without their patience, kindness,

and encouragement. I am especially thankful to my parents, Nathan and Gloria,

vi

to whom I owe so much. Thanks also to my siblings—Esther, Cephas and Sarah,

Nehemiah, and Abigail—for their encouragement. My heartfelt gratitude goes to

Edwin, Emmanuel, and Phil Dordoe.

To all who have helped me on this journey, I don’t have the space to list all your

names, but I am truly grateful. Thank you.

Contents

Declaration ii

Declaration of Authorship iii

Abstract v

Acknowledgements vi

List of Figures xii

List of Tables xiv

Abbreviations xv

List of Publications xvii

1 Introduction 1

1.1 Overview . 2

1.2 Motivation . 5

1.3 Aims and Objectives . 7

1.4 Contributions . 8

1.5 Thesis Overview . 10

2 Background and Related Work 12

2.1 Internet of Things (IoT) . 13

2.2 Cloud Computing . 17

2.3 A Brief Historical Perspective . 19

2.4 Fog Computing . 21

2.4.1 Fog Computing Features . 23

2.4.2 Fog Applications . 25

2.4.3 Fog Architectures . 31

2.5 Reliability . 34

viii

Contents ix

2.6 Middleware . 34

2.6.1 Key Middleware Challenges in Fog Computing 35

2.7 Related Work . 37

2.7.1 Resource Management in Fog Computing 38

2.7.2 Reliability in Fog Computing 39

2.7.3 Fog Middleware . 40

2.7.4 Research Gaps . 44

2.8 Summary . 45

3 Research Design 47

3.1 Research Approach . 47

3.2 Feature Analysis and Selection . 49

3.3 Middleware Approach to Fog Resource Management 50

3.4 Design and Development of Middleware Features 50

3.5 Evaluation Metrics and Results . 51

3.6 Rationale for Evaluation Approach 54

3.6.1 Simulation Tools for Fog Computing 56

3.6.2 Simulation Environment . 58

3.7 Summary . 61

4 Middleware for Fog Resource Management 63

4.1 Review of Fog Resource Management 63

4.1.1 Resource Management Tasks 66

4.2 Middleware Framework Requirements 70

4.2.1 Transparency . 70

4.2.2 Adaptability . 71

4.2.3 Interoperability . 72

4.2.4 Context-awareness . 72

4.3 Middleware Features . 73

4.4 Middleware Architecture . 75

4.4.1 Communication Layer . 76

4.4.2 Management Layer . 79

4.4.3 Services Layer . 83

4.5 Summary . 85

5 Transparent Task Processing with Middleware in Fog Computing 86

5.1 Problem Description . 87

5.2 Proposed Solution . 89

5.3 Case Study: Remote EEG Monitoring 91

5.4 Results and Discussion . 94

5.4.1 Response Time . 94

5.4.2 Network Usage . 94

5.4.3 Energy Consumed . 96

5.5 Conclusion . 97

Contents x

6 Middleware-enabled Cluster Interoperability 99

6.1 Clustering in Fog Computing . 100

6.2 Problem Description . 101

6.2.1 Core Challenges . 102

6.2.2 Illustrative Scenario . 103

6.2.3 Research Gap . 103

6.3 System Model . 104

6.3.1 IoT/User Layer . 104

6.3.2 Cloud Layer . 105

6.3.3 Fog Layer . 105

6.4 Evaluation and Results . 106

6.4.1 Inter-cluster Resource Sharing 108

6.4.2 Scheduling . 109

6.5 Conclusion . 111

7 Middleware-enabled Fog Peer-to-Peer Model 113

7.1 Problem Statement . 115

7.1.1 Limitations of Hierarchical Fog Architectures 116

7.1.2 Illustrative Scenario . 117

7.1.3 The Need for a Decentralised Approach 118

7.2 Proposed Model . 118

7.3 Cluster-Based Architecture . 119

7.4 Peer-to-Peer Architecture . 119

7.4.1 Peer Bootstrapping . 120

7.4.2 Request Handling . 121

7.4.3 Peer Connection Management 121

7.5 Evaluation . 122

7.6 Analysis of Results . 123

7.7 Conclusion . 126

8 Discussion and Future Directions 128

8.1 Availability and Reliability . 128

8.2 Adaptiveness and Distributed Architecture 130

8.3 Factors Contributing to Performance 132

8.4 Comparative Analysis with Existing Middleware Solutions 133

8.4.1 Key Differentiators . 133

8.4.2 Limitations and Trade-offs 134

8.4.3 Optimal Use Scenarios . 134

8.5 Future Directions . 135

9 Conclusion 140

9.1 Contributions . 141

9.1.1 Middleware for Fog Computing 141

9.1.2 Middleware-enabled Clustered Fog Architecture 141

Contents xi

9.1.3 Frameworks and Algorithms for Resource Management among
Fog Clusters . 142

9.1.4 Middleware-enabled Peer-to-Peer Fog Architecture 142

9.1.5 Simulation Tool . 143

9.2 Final Remarks . 143

References 144

List of Figures

1.1 Round Trip Time to Amazon Data Centres from London Data Cen-
tre and delay requirements of some smart applications. 4

2.1 ITU IoT Reference Model . 15

2.2 Fog Architecture . 21

2.3 OpenFog smart car and traffic control system 28

2.4 Ubiquitous Healthcare System with Cloud 30

2.5 The Four Fog Deployment models 32

2.6 Role of middleware in Cloud of Things 36

3.1 The Research Design used in the thesis 48

3.2 Middleware Feature Design and Evaluation Approach 51

3.3 The Fog Node Module . 60

3.4 GUI view of the simulation (clustering example) 61

4.1 Decentralised (Peer-to-Peer) Fog Model with Middleware 75

4.2 Proposed Fog Middleware . 77

4.3 Middleware self-adaptive system . 82

5.1 Problem Scenario . 88

5.2 Architecture of the proposed model with middleware 90

5.3 Architecture used in the simulation 92

5.4 Application Model for the simulation 93

5.5 Comparison of application response time for the three scenarios . . 95

5.6 Comparison of network usage for the three scenarios 95

5.7 Comparison of energy consumption for devices in each scenario . . . 97

6.1 Fog Clustered Architecture . 104

6.2 Inter-cluster distances . 108

6.3 Response Times for Applications 109

6.4 Response Times for Scheduling Schemes 110

6.5 Fog Node Utilisation for different scheduling schemes 111

7.1 Architectural Approaches . 120

7.2 Bootstrapping process for new peers to join the network. 122

7.3 Utilisation among peer nodes . 124

xii

List of Figures xiii

7.4 Response times for Peer-to-Peer, Clustered, and Cloud processing . 125

7.5 Comparison of utilisation and request distribution characteristics. . 126

List of Tables

2.1 Mapping of OSI Model Layers to IoT Protocols and Technologies . 14

2.2 Middleware for Fog and Edge Computing 41

3.1 Some Fog Simulators . 55

4.1 Resource Management in Fog Computing 65

4.2 Summary of Resource Management Tasks in Fog Computing. 67

4.3 Categories of Resources and Their Contributions 73

5.1 Values of simulation parameters . 93

6.1 Simulation Parameters . 107

6.2 The scheduling schemes used and their implementation approach
for the experiments . 110

7.1 Simulation Parameters . 123

xiv

Abbreviations

AMQP Advanced Message Queuing Protocol

AWS Amazon Web Services

CBOR Concise Binary Object Representation

CC Cloud Computing

CoAP Constrained Access Protocol

CPS Cyber-Physical Systems

CSP Cloud Service Provider

DTLS Datagram Transport Layer Security

EEG Electroencephalography

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IoV Internet of Vehicles

ITS Intelligent Transport System

JSON JavaScript Object Notation

LTE-M Long Term Evolution for Machines

LwM2M Lightweight Machine to Machine

MAC Medium Access Control

MEC Mobile Edge Computing /

Multi-Access Edge Computing

MQTT Message Queuing Telemetry Transport

NB-IoT Narrowband Internet of Things

xv

List of Abbreviations xvi

NIST National Institute of Standards and Technology

OFC Open Fog Consortium

OSI Open Systems Interconnection

PaaS Platform as a Service

QoE Quality of Experience

QoS Quality of Service

RFID Radio Frequency Identification

SaaS Software as a Service

SoA Service-oriented Architecture

TCP Transmission Control Protocol

TLS/SSL Transport Layer Security / Secure Sockets Layer

UDP User Datagram Protocol

URLLC Ultra-Reliable Low-Latency Communications

UUID Universal Unique Identifier

VANET Vehicular Ad-hoc Networks

Wi-Fi Wireless Fidelity

WSN Wireless Sensor Networks

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

List of Publications

The following publications have arisen from the research presented in this thesis:

1. H. Samwini, M. Awais, and E. Pereira, “Middleware for Resource Sharing

in Fog Computing with IoT Applications,” in IEEE EUROCON 2023 - 20th

International Conference on Smart Technologies, May 2023, pp. 508–513.

(Chapter 5)

2. H. Samwini, M. Raza, E. Pereira, U. Khan, and M. Awais, “Critical anal-

ysis of resource sharing and optimization in fog clustering,” in 2024 Inter-

national Conference on Emerging Trends in Smart Technologies (ICETST),

Karachi, Pakistan: IEEE, October 2024, pp. 1–6. (Chapter 6)

xvii

To the glory of God . . .

xviii

CHAPTER 1

Introduction

In the first decades of the internet, computers connected people to access infor-

mation stored on servers or for communication. That has changed in the last two

decades. More “things” are connected to the internet now than computers. It has

been estimated that the Internet of Things (IoT) would be worth between $5.5

trillion and $12.6 trillion in value globally by 2030 [1]. The growing number of

connected devices means an exponential growth in data, which requires process-

ing. In 2024, the total amount of data created, captured, copied, and consumed

worldwide is projected to reach 149 zettabytes, up from just 2 zettabytes in 2010.

[2]. The current centralised cloud architecture cannot deal with large volumes

of data as more devices are connecting to the network everyday. Fog computing

has the potential to address this challenge. However, fog computing has not yet

fully developed as a computing paradigm. One of the key aspects which must be

addressed for fog computing is the management of computing and other resources.

This thesis presents an investigation into the role of middleware in addressing this

challenge.

1

2

1.1 Overview

Fog Computing has been given significant attention by several research commu-

nities in computing since it was first proposed in 2012 by Cisco [3]. It represents

a paradigm that addresses several challenges identified in cloud computing, espe-

cially as IoT expands the volume of data expected to be processed by the cloud.

However, fog architecture presents several challenges and raises questions that

must be addressed within multiple fields for the paradigm to become a reality.

The exponential increase in the number of devices connected to the internet has

necessitated a reconsideration of Cloud Computing. As the Internet of Things

enables more devices which require cloud services to connect to the Internet, it

is becoming infeasible to send all data to the cloud for processing. This section

presents an overview of the challenges the current cloud architecture faces–partly

a result of its success. It shows how the Internet of Things has necessitated a mod-

ification of Cloud Computing and briefly discusses the need for Fog Computing.

Cloud Computing made the long-held vision of computing as a utility a reality

by making computing resources readily available to users as and when required.

Cloud computing saves developers the capital cost of deploying servers and net-

work infrastructure to host their applications. Developers focus on developing

applications, while Cloud Service providers offer the resources and expertise to

deploy large-scale data centres focused on making computing resources available

on a pay-per-use basis [4]. This arrangement makes upward and downward scaling

of an application’s resource provision more flexible, as resources to a user can be

increased and decreased automatically without the direct involvement of human

actors or much effort. The cost savings and flexibility the cloud affords have con-

tributed significantly to the growth of the Internet. Also, because of its flexibility,

new services are deployed in a relatively short time, and developers and researchers

can explore new ideas at minimal cost [5]. Despite this success, cloud computing

faces challenges that have engaged the attention of various research communities,

most of which are related to the growing number of users.

3

The rapid growth of the Internet of Things (IoT) has led to an exponential in-

crease in cloud services [6]. IoT connects physical objects to the Internet. Increas-

ing smart devices at the network edge challenges cloud computing architecture.

In the current cloud architecture, end users use services by sending data from

the edge through the network core to distant data centres owned and managed

by cloud service providers (Amazon, Google, Microsoft, IBM, etc.). While this

model has worked well, the increasing number of smart or IoT devices at the

edge presents new challenges. First, smart devices produce high volumes of data

(Big Data) [7], which requires processing to be valuable. The timely processing of

data and actuation in response to its output makes IoT devices smart [8]. This

notwithstanding, the characteristics of smart devices (small form factors, little or

no processing or storage resources and low power) mean they cannot process the

data they produce [9, 10]. Unlike traditional cloud applications used by comput-

ing devices through users, most IoT applications have end devices with little or

no resources to process their data. They are, therefore, more dependent on the

cloud than traditional cloud applications. This has implications for the cloud and

application performance.

In certain applications, running services on distant data centres impacts the Qual-

ity of Experience (QoE) of users due to increased round-trip delays. Data Centres

are usually located a long distance away from end users and sometimes across

continents. The farther away a data centre is, the longer the wait a user would

have while using an application. Figure 1.1 illustrates the relationship between the

user location and the data centre location. The figure shows the round-trip times

for pinging Amazon Web Services data centres from their London Data Centre.

As the chart shows, as data moves farther away from Europe, the delay increases

considerably. Such delays mean that for latency-sensitive applications, it is im-

practical to run services in distant data centres. According to Schulz et al. [9],

latency-critical IoT applications such as autonomous driving require a delay of

50ms, while smart grids require up to 20ms delay. Smart Factories have the lowest

delay requirement of 250us to 10ms. For such applications, the mean value of

117ms recorded in figure 1.1 would result in undesirable application performances.

4

Figure 1.1: Round Trip Time to Amazon Data Centres from London Data
Centre and delay requirements of some smart applications.

In the case of delay-critical applications such as autonomous driving, the results

could be fatal [11].

Another effect of the exponential increase in IoT devices at the network edge is

the sheer increase in network traffic. The growth of IoT devices at the network

edge and their requirement for computation resources mean that much more data

must traverse the network towards the cloud. The frequency and latency of com-

munication of these devices make it impracticable to send all requests from users

and IoT devices to the cloud [12]. In most IoT applications, sensors collect states

of physical objects, and actuators send instructions to the objects based on the

recorded states. In applications such as Intelligent Transportation Systems, the

sensor-processing-actuation loop must remain within the context of the objects or

devices involved [13]. Smart vehicles are estimated to generate over 1 terabytes of

data per hour[14]. Processing such data at a distant data centre removes it from

5

its context. It is counterproductive for data for an Intelligent Transport System

in Liverpool to send all the data to a data centre in Seatle for processing, for

example. It would also load the network devices at the network edge if all objects

(vehicles, roadside units, traffic lights, radar, etc) sent their data to the same data

centre for processing. Furthermore, for specific applications, other factors restrict

the use of the cloud. Legal requirements that restrict the storage and processing

of personal data outside a jurisdiction mean that processing must be done locally

for such applications. For example, in healthcare IoT applications, a lot of sensi-

tive user data is collected, which may restricted from being processed outside the

jurisdiction where the data is collected [15].

To solve the above challenges of the IoT-cloud continuum, Cisco proposed fog

computing, as an extension of cloud computing, to complement the cloud by pro-

cessing data closer to its source (at the network edge or core) to improve the user

experience for delay-sensitive applications [3]. Fog computing makes use of net-

work devices, servers, and other devices that are close to the user to process user

requests. However, the paradigm is yet to become a reality as there are still several

challenges for researchers to address. Fog Computing adds a layer to the IoT-cloud

architecture. This introduces complexities such as managing the resources at the

fog layer and ensuring that users receive the same service guarantees that the

predictable cloud environment affords.

1.2 Motivation

Fog computing has been widely acknowledged as a suitable solution to the chal-

lenges of cloud computing. As highlighted above, fog computing as a paradigm

is not mature. Challenges must be addressed to make it a reality [16, 17]. Given

that fog computing adds a layer to the current cloud architecture, it makes the

system more complex. Furthermore, the devices at the fog layer are dynamic and

heterogeneous in several ways. These aspects of fog computing make resource

management and reliability crucial for the development of the paradigm.

6

Resource management in fog computing requires a holistic approach. Unlike other

proposed solutions to providing computation closer to where data is produced,

fog computing is envisioned as an extension of the cloud [3]. It, therefore, brings

together different resources, including the user and cloud layers. Research into

fog resource management has investigated task offloading, application placement,

load balancing and resource allocation [18, 19]. Most existing works have focused

on specific aspects of resource management and proposed techniques to address

them. Factors affecting the reliability of fog systems, such as the dynamic nature

of the fog environment, have not been thoroughly investigated [17, 20]. Moreover,

reliability aspects, such as availability, have not received much attention. The het-

erogeneous nature of devices at the fog layer, their effect on resource management

and reliability of the fog systems also need to be addressed [21].

Furthermore, although middleware has been utilised in distributed systems to ad-

dress several challenges associated with resource management in fog computing,

there has been limited research on middleware specifically designed for fog com-

puting. In fog computing, devices may be mobile or serve as volunteer nodes made

available for a brief, unpredictable period [22]. Moreover, fog nodes and IoT de-

vices are heterogeneous in various ways, such as size, availability, and resources.

The need for middleware in fog computing has been identified as an important

aspect that has to be addressed [10]. The authors in [23] identified over 500 mid-

dleware proposals for IoT. Middleware has also been an important part of cloud

computing [24].

Based on the analysis of existing studies, the following aspects of Fog Resource

Management remain to be addressed:

• A unified framework that integrates scheduling, resource allocation, load

balancing and task offloading at the fog layer.

• Empirical studies quantifying the trade-offs between resource management

considerations in fog computing, such as utilisation, reliability and availabil-

ity.

7

• Middleware solutions that effectively abstract resource heterogeneity while

maintaining performance optimisation.

To address these gaps, the work presented in this thesis explores the use of mid-

dleware for resource management in fog computing. A middleware framework is

proposed to manage the interaction among fog nodes and between fog nodes and

end devices or the cloud. The objective is to ensure reliability while maintaining

heterogeneity. An analysis of the fog resource management literature is used to

develop the middleware features. Middleware manages the interaction between

fog nodes and between the end devices or the cloud to ensure reliability while

maintaining heterogeneity.

1.3 Aims and Objectives

The principal aim of the work presented in this thesis is to devise and evaluate

middleware framework and its associated services for efficient resource manage-

ment in fog computing. The proposed middleware enables resource pooling across

the fog layer, enhancing application reliability and performance.

To achieve the above aim, it is divided into the following research objectives:

1. Critical Analysis of Resource Management in Fog Computing

Resource management in fog computing has received a lot of attention from

researchers. This objective aims to establish the state-of-the-art to inform

the direction of the study. A review of resource management approaches in

fog computing identifies key challenges in Fog Computing and requirements

for the proposed middleware framework.

2. Definition of Middleware Features

8

Drawing from the findings of the first objective, this objective seeks to define

the properties and features of the proposed middleware based on identified re-

quirements. The design draws from distributed system principles to present

a middleware architecture and framework for fog computing.

3. Design and Development of Middleware Components

Develop middleware components to manage resources in fog computing. De-

velop and/or adopt techniques considering the trade-offs between various

resources and application requirements at the fog layer.

4. Performance Evaluation of Middleware

The final objective evaluates the middleware using relevant performance met-

rics. The assessment examines its impact on fog computing services and

applications, comparing it against cloud architectures and existing fog com-

puting frameworks. Additionally, the middleware’s performance is tested

with latency-critical applications.

1.4 Contributions

This thesis makes the following contributions to knowledge:

1. Middleware for Fog Computing

The middleware includes features derived from current research on resource

management in fog computing. Specifically, this work contributes to de-

veloping a middleware platform in the context of an intermediary layer in

multi-layered distributed system architectures. The middleware is designed

to address challenges of heterogeneity, service discovery, resource sharing,

and dynamic environment. Furthermore, the middleware supports different

architectural environments, which are used at the fog layer, namely: hierar-

chical, clustered and peer-to-peer architectures.

2. Middleware-enabled Clustered Fog Architecture

9

This work presents a clustered fog architecture that follows the Internet

model of Autonomous Systems. Each cluster is an Autonomous System with

all nodes under common administrative control. As part of this model, one

feature of the middleware is to enable interoperability across Autonomous

clusters. Consequently, load balancing and scheduling within and across

clusters is evaluated. The concepts of inter and intracluster resource man-

agement using middleware is also developed. The scalability of an appli-

cation relative to load balancing across different inter-cluster distances for

fog clusters is analysed. The results demonstrate that factors such as the

distance between fog devices, which is hitherto ignored in the literature, are

crucial factors for load balancing at the fog layer.

3. Frameworks and Algorithms for Resource Management among Fog Clusters

As part of the middleware framework, algorithms for various resource man-

agement tasks have been developed and presented in this work. Frameworks

have been developed and presented for resource discovery, load balancing

and request handling. Specifically, the developed techniques are distinct

from existing approaches in two ways. First, they are deployed within clus-

tering and peer-to-peer environments. Second, they are developed as part

of an adaptive middleware framework. This is an important contribution

to fog research as it shows the benefits of combining different aspects of re-

source management required for fog computing instead of developing and

evaluating specific techniques.

4. Middleware-enabled Peer-to-peer Fog Architecture

This work also presents a peer-to-peer model for fog computing managed

by middleware. Following the results of the work on clustering, further

work is done to take advantage of the benefits of peer-to-peer architectures.

The peer-to-peer model showed high scalability and utilisation compared

to clustering. As there is a dearth of work that explores the use of peer-

to-peer architectures for fog computing, this work constitutes an important

contribution towards understanding the use of peer-to-peer architectures in

10

the fog environment. Moreover, it also presents a middleware framework for

peer-to-peer fog layer collaboration.

5. Simulation Tool for Clustered and Peer-to-peer Fog Architectures

Extension of Omnet++ with simulation of peer-to-peer and clustered envi-

ronment in fog computing. This will help other researchers explore further

directions of fog/edge computing paradigms under different architectures.

1.5 Thesis Overview

The structure of the rest of the thesis is presented below:

Chapter 2 presents a background and review of the related literature. It also

provides an overview of Cloud Computing and the Internet of Things, leading to

a focus on fog computing, its features, architecture, and challenges. Core litera-

ture on fog resource management and infrastructure (specifically middleware) are

discussed to show the gaps the work in this thesis addresses. This chapter situates

the work contained in the rest of the thesis within the existing research in fog

computing.

Chapter 3 follows the discussion of existing work and the identification of gaps to

present the approach and methods adopted in this work to address the gaps. The

chapter presents the stages involved in the research and discusses the key decisions

made, the tools used and the rationale for these choices. The discussion is also

in the existing literature to demonstrate how the adopted approach aligns with

existing work. The chapter discusses simulation as a method of system evaluation

for distributed systems and discusses its benefits and limitations. The discussion

concludes with a presentation of the simulation tool, which is written for parts of

this work.

Chapter 4 is the first of the thesis’s four core chapters. It presents the details

of the middleware model proposed in this work. The chapter starts by analysing

resource management in fog computing based on the relevant literature. The

11

analysis leads to presentation and discussion of the middleware’s principles and

features. Following that, the middleware architecture is presented with a discus-

sion of its components. This chapter represents the focal point for the rest of

the thesis. The three chapters that follow it may be read independently as stan-

dalone contributions based on the components of the middleware presented in this

chapter.

Chapter 5 details and evaluates the middlewares transparency and abstraction

principles. It also presents results for evaluating how middleware processes request

from IoT applications and presents load balancing among neighbouring fog devices.

The chapter also presents the results for evaluating the request handling framework

using an EEG application. The contents of this chapter are published in [25].

Chapter 6 extends the work in the previous chapter by introducing clusters under

centralised controllers. The focus is on the load balancing and task scheduling

functions of the middleware. The chapter also presents a significant contribution

of this workthe clustering architecture for fog computing organised as autonomous

systems with middleware providing interoperability between clusters. The work

in this chapter in published in [26]

Chapter 7 presents the middleware’s adaptive feature and shows how it works in

different fog architectures. It also presents the peer-to-peer fog architecture. The

chapter ends with an evaluation of peer-to-peer architecture, including a compar-

ison of its performance with that of cluster architecture.

Chapter 8 presents a discussion of the key findings of the thesis and their impli-

cations in relation to existing work in the field. The chapter ends with a discussion

of some future directions for the work.

Chapter 9 concludes the thesis by restating the contributions and implications

of the thesis. It ends with some final remarks on the research and its contribution.

CHAPTER 2

Background and Related Work

The primary aim of the thesis is to devise and evaluate middleware framework

and its associated services for efficient resource management in fog computing.

To achieve this goal, it is important to establish a state-of-the-art basis for the

investigation, which is the purpose of this chapter.

This chapter provides a background overview of the relevant related technologies

and traces the origins of fog computing, focusing on understanding how charac-

teristics of fog computing necessitate resource management. Following that, the

chapter highlights the existing research in the key thematic areas of the thesis,

namely resource management, middleware, and reliability, and highlights the gaps

that the work presented in the rest of the thesis will address. This chapter thus

underpins the thesis by contextualising it in the existing literature.

Structurally, there are six thematic sections with relevant subsections. The first

three sections present the background. They consist of sections on the Internet of

Things, Cloud Computing and Fog Computing. The final two sections follow the

third section and present reviews of related literature on resource management,

reliability and middleware in fog computing. Based on the reviewed literature and

the state-of-the-art presented, the final section summarises the findings, describes

the gaps the work in the thesis will address and links these to the next chapter.

12

13

2.1 Internet of Things (IoT)

Kevin Ashton of the MIT Auto-ID Centre introduced the idea of the Internet

of Things for the supply chain industry in 1999 [27]. Ashton argued that the

potential of computers was limited because they were restricted to only data input

from human users. The Internet of Things was thus to allow computers to sense

the objects in their surroundings and gather data from objects without relying on

human beings who could make errors while inputting the data. The Internet of

Things then was to use sensors and Radio Frequency Identification (RFID) chips

embedded in everyday objects as sources of data for computers. Six years after the

term was first used, the United Nations International Telecommunications Union

(ITU) expanded the vision in its 2005 Internet Report for connectivity between

anything with anyone at anytime from any place [28]. The concept of IoT has

continued to evolve since then.

IoT connects everyday objects to the internet to allow them access or share data or

instructions. Typical phases of IoT systems are sensing data, processing to make

sense of the data and taking action on the information [29]. RFID tags are used

to identify objects as an RFID sensor senses them. With RFID technology, the

movement of objects across a supply chain, goods within a supermarket or books

in a book store can be tracked with no human intervention [30]. Additionally,

sensors and actuators allow objects to interact with people and other objects over

the network. Moreover, some objects become smart by processing some of the

data they sense [31]. IoT applications have been extended to healthcare [32],

power grids [33], transportation [34], agriculture [35], and industry [36, 37]. In

2008, the number of things connected to the internet exceeded the number of

humans on the planet [38].

The following are the common protocols used for IoT across the OSI layer stack:

1. Message Queuing Telemetry Transport (MQTT) is an International

Standards Organisation (ISO) standard publish-subscribe-style application

14

Table 2.1: Mapping of OSI Model Layers to IoT Protocols and Technologies

OSI Model Layer IoT Protocols and Technologies
Application MQTT, CoAP, HTTP/HTTPS, AMQP, XMPP, DDS,

LwM2M
Presentation TLS/SSL, CBOR, JSON, XML, Protocol Buffers (proto-

buf)
Session MQTT, CoAP, DTLS
Transport TCP, UDP, QUIC
Network IPv6, 6LoWPAN, RPL, Thread
Data Link IEEE 802.15.4, Ethernet, Wi-Fi MAC, Bluetooth LE, Lo-

RaWAN MAC
Physical IEEE 802.15.4, Wi-Fi (802.11), Bluetooth, LoRa, NB-

IoT, Sigfox, RFID, Z-Wave, LTE-M

protocol that works with TCP/IP protocol. It is designed for limited-

bandwidth applications.

2. Constrained Access Protocol (CoAP) is designed for Machine-to-Machine

communications and follows the request-response model.

3. Advanced Message Queuing Protocol (AMQP) is an application pro-

tocol for transferring messages between organisations. It provides security,

interoperability, reliability, queuing and routing.

4. Wireless Fidelity (Wi-Fi) IEEE 802.11 is a radio wave communication

protocol that serves as a wireless alternative to wired ethernet technology for

Local Area Networks (LAN). Wi-Fi operates at 2.4GHz or 5GHz frequencies.

5. Wi-Fi HaLow, based on the IEEE 802.11ah specification, is a new low-

power, long-range Wi-Fi technology for IoT connections. It operates in the

900 MHz band and consequently has a longer range (up to approximately 1

km) and better propagation (due to its lower frequency).

6. Bluetooth (IEEE 802.15.1) Is a low power wireless technology operating

at the 2.4 GHz ISM Band. Bluetooth is designed to create Personal Area

Networks (PAN). It is designed for low-cost, low-power communications,

supporting data rates of 1 Mb/s. It also uses the 2.4GHz frequency.

15

Figure 2.1: ITU IoT Reference Model [42]

7. RFID: First invented in 1948 [39]. It is used to identify objects or record

metadata. The RFID system consists of a reader and several RFID tags.

The tag is a microchip connected to an antenna. The microchip stores data,

and the antenna transmits the data stored on the chip to a reader through

radio waves at frequencies ranging from 100kHz to 10 GHz.

8. Zigbee: A low-cost network with three components: a coordinator which

connects the ZigBee network to an existing or larger network, routers which

pass on data from other devices in the network towards the coordinator, and

end devices, which are devices with limited functionality.

Table 2.1 maps the layers of the OSI model to IoT protocols.

Researchers take different views of describing IoT systems. For instance, Atzori et

al. [40] identify three aspects of IoT, namely things, the internet and semantics.

Semantics refers to how we make sense of the data collected by things. The internet

or network is the medium of sending the data to the point of storage or processing.

There are also several layered architecture models proposed for IoT. Two common

models are the three layer model [41] and the ITUs five layered model [42] shown

in figure 2.1.

Xu et al. take a functional approach and propose a four-layer Service-Oriented

Architecture comprising Sensing, Networking, Service and Interface Layers [43]:

16

1. Sensing Layer: sensor nodes including Bluetooth devices, scalar sensors,

analog sensors, digital sensors and RFID tags. Senses or collects data directly

interfaces with the environment. The characteristics of this layer are the low-

power requirements, and they are characterised by Wireless Sensor Networks

(WSN). Similar to the other network devices, IoT devices have a Universal

Unique Identifier (UUID)

2. Networking Layer: This layer is for communicating with other devices.

This is for sending the sensed data to the point of processing to other parts

of the system. Networks may be local networks, social networks, databases,

WSNs, or the internet.

3. Service Layer: This layer offers services to user. It processes data collected.

The services layer consists of several services that make use of diverse sources

of data, including data from other IoT devices, the internet, etc., to make

sense of the data collected. It consists of the business logic that transforms

the data into information that produces value.

4. Interface Layer: provides a platform for managing the interaction between

various components, including users, other devices and services.

IoT connects many things to the network and, consequently, produces huge vol-

umes of data that require computation. The increasing heterogeneity of the devices

compounds this challenge. Also, the heterogeneity extends to the protocols they

use and the data they produce [21]. Managing the mobility of devices in IoT

is another challenge from a data processing perspective [44]. Other areas to be

addressed in IoT include interoperability, scalability, and the processing of high

volumes of data generated to meet application requirements [36].

As discussed above, IoT devices often have limited capability to process the data

they generate. Therefore, they rely on Computation Offloading, which is transfer-

ring complex or intensive computational tasks to a remote serveroften, this is to

the cloud.

17

2.2 Cloud Computing

Cloud computing is a computing model that provides computing resources, in-

cluding hardware and software, to clients on a pay-per-use basis over the Internet.

Resources are held in data centres operated and managed by CSPs who make them

available to clients with little or no human interaction between the parties. The

objective is to make computing resources utilities like gas or electricity. The term

computing as a utility was first used by Corbato et al. in 1965 [45] but was only

fully realised at the start of the 21st century when Amazon launched Amazon Web

Services (AWS) to make resizable compute resources available over the internet

[46].

Computing as a utility reduces capital expenditure for deploying new applications

[47]. Developers and researchers can focus on providing technological solutions

without worrying about the setup and operation of servers and other infrastruc-

ture to keep their systems running. Cloud service providers such as Amazon,

Google and Microsoft focus on setting up, maintaining and provisioning hardware

and software resources while their clients—corporations, start-ups, researchers,

and individuals—focus on deploying their products or solutions [4]. Cloud Ser-

vice Providers (CSP) make processing, storage, network, and other computing

resources readily available to users as and when needed without direct human

interaction with the service provider.

The United States National Institute of Standards and Technology defined Cloud

Computing. They defined five characteristics, three service models, and four

deployment models of Cloud Computing. The essential characteristics are on-

demand self-service, broad network access, rapid elasticity, measured service and

rapid elasticity These are achieved in four deployment models [48]:

• A data centre owned, managed, and used by an organisation providing ser-

vices within the organisation is a private cloud. Large corporations and

18

governments usually deploy private clouds. The resources are not available

to the public.

• In public clouds resources are made available to the public on a pay-per-use

basis. Resources can be requested and accessed by anyone with internet

access.

• A Community cloud is owned by a group of organisations with a common

interest, like education or health institutions. They are setup for the col-

lective interest of the ownership. The resources are either managed by the

owners or by a third party on their behalf.

• Hybrid clouds are a combination of two or more of the other models. Hybrid

Clouds are often used when private cloud owners require additional resources

from public clouds due to increased demand for resources or failure [49].

Cloud Computing providers use three main service models to provide services

to clients — (i) Infrastructure-as-a-Service; (ii) Platform-as-a-Service; and (iii)

Software-as-a-Service [48].

Under Infrastructure-as-a-Service or IaaS, a service provider provisions hardware

resources to the client. The client sets up and runs the System Software and other

software required to make the system functional. With Platform-as-a-Service, the

service provider provides tools for clients to develop and run their own software

on the providers platform. The client is not concerned with the system software

behind the system. Applications deployed by the client must be compatible with

the platform of the provider. In Software-as-a-Service, the service provider makes

specific applications or resources available to clients. The client uses the applica-

tion and resources without direct access to the system the application is running

on.

An essential feature of Cloud Computing Systems is elasticity. Elasticity enables

more resources to be provisioned when they are needed and released or given

back when they are not [50]. In 2008, the Washington Post made 17,481 pages

19

of documents from the US National Archives publicly available 9 hours after they

were released. The Newspaper was able to do this using 200 computers from

Amazon EC2 [51]. Although elasticity creates the perception of the availability of

an infinite number of resources to the user, there is a limit to the resources service

providers can provide. Moreover, energy consumption by data centres impact

environmental sustainability [52].

Despite its success, cloud computing faces challenges that may impact its contin-

ued patronage and growth. Security and Privacy concerns arise from how cloud

resources are shared and managed [53]. Also, applications in fields such as health-

care, emergency services and transportation, which are delay-sensitive, cannot

cope with the high latency resulting from running processes on servers in remote

data centres [54]. For Cloud Computing to continue its growth and impact, these

challenges need to be addressed [24]. Moreover, as discussed in the previous sec-

tion, the increasing number of networked devices from the Internet of Things (IoT)

and other technologies significantly increases the demand for cloud resources [10].

2.3 A Brief Historical Perspective

The origins of the paradigms proposed to address the challenges identified with

Cloud Computing can be traced back to the early days of the cloud itself. As

with other most new technologies, the convergence of different technologies which

target unrelated issues led to their emergence. This section traces the origins of

paradigms which attempt to address these challenges. The distinguishing charac-

teristics of each is highlighted leading up to Fog Computing and how it is unique

to the others. To restate the problem, cloud computing faces challenges as more

IoT devices and new internet applications are deployed. These include dealing

with the high volumes of data produced by IoT devices, meeting requirements of

delay-sensitive applications, and ensuring quality of service and service level agree-

ment guarantees are met even when the system is overloaded. These challenges

20

may lead to reduced patronage of cloud computing as users do not get the level of

service they expect from using the cloud.

The earliest technology to target these challenges predates cloud computing; it

arose in response to a challenge identified with another disruptive technology: the

mobile computing. Similar to IoT devices, although mobile phones had the po-

tential to disrupt several fields, such as healthcare and entertainment, they were

limited by their computational capabilities and battery life [55]. To realise the

potential of mobile phones, Mahadev Satyanarayanan proposed Cyber Foraging in

2001 [56]. Cyber Foraging offloads computationally intensive tasks from mobile

devices to capable servers for processing. When Cyber Foraging was first pro-

posed, there was no technology to provide the capable server required until Cloud

Computing emerged a few years later, birthing Mobile Cloud Computing.

Through Mobile Cloud Computing, mobile phones became more capable, leading

to the emergence of different applications and services such as social media and

mobile healthcare. However, the requirement for improved latency for some mobile

applications led to the emergence of Cloudlets [57], computing resources that are

resource-rich and available to nearby mobile devices. This was the start of Mobile

Edge Computing (MEC) [58]. Mobile devices made use of nearby cloudlets or used

the cloud where there were no cloudlets available. Edge Computing was coined as

the use of cloudlets extended to other end-devices apart from mobile phones [59].

Also, Mobile Edge Computing has been renamed Multi-Access Edge Computing

[60].

It is important to note that MEC is well-suited to cell phones because phones

have some computational resources, although they are limited. Consequently,

they can interact with nearby cloudlets and resort to the cloud when no cloudlets

are available. On the other hand, IoT devices range across every kind of device and

include devices which have no computational capabilities. IoT also covers a wide

area and often consists of devices collaborating within their context to provide

services, while mobile phones often act independently. This distinction led to the

emergence of Fog Computing [58].

21

What all these computation offloading paradigms have in common is the use of

computation resources closer to users - where data is produced. Fog Computing

is unique as it provides multiple tiers of computing between the cloud and the

user, which makes it scale vertically as well as horizontally [61, 62]. Also, unlike

its precursors, fog computing is not independent of the cloud. It works with

the cloud; it does not exist or work independently of the cloud [63]. The multi-

tiered, coordinated approach of the fog layer raises complex management issues

which are interesting from a distributed systems perspective and require further

investigation.

2.4 Fog Computing

Fog computing was first introduced by Cisco in 2012 as a complementary paradigm

to cloud computing [3]. Fog uses compute, network and storage resources across

the network on devices such as gateways, switches and routers to perform some

processing, management and storage for the cloud [64].

Figure 2.2: Fog Architecture

22

Figure 2.2 shows a fog architecture with three layers. The lowest layer, the IoT

and end-user layer, has IoT and end devices. Certain applications have either IoT

devices or end devices only at this layer and not both [19]. The middle layer,

or fog layer, has devices with varying computational power, storage and network

capabilities. The devices may be grouped into domains. Each domain has several

fog nodes. The fog layer may have multiple tiers with increasing capabilities the

closer they are to the cloud. Since fog nodes are closer to the user and have varying

characteristics, fog computing is inherently heterogeneous and more context-aware

than the cloud. The third or top layer of the architecture is the traditional cloud

data centre. This layer has powerful servers for heavy computational, storage and

network tasks. However, they are far from IoT and end devices. Moreover, the

cloud layer maintains a system-wide view of the system.

Fog computing benefits both cloud data centres and end-users by reducing the

workload of cloud data centres and reducing users’ latency. Devices at the fog

layer complement cloud servers by carrying out defined tasks and passing more

demanding and less delay-sensitive tasks to cloud servers. This arrangement re-

solves the challenges identified with cloud computing. First, by processing the

data from IoT close to the data source, more contextualised problem-solving is

possible, and the cloud can process and store data for longer-term and system-

wide support. This reduces the pressure on the network towards the cloud and,

consequently, on cloud servers. Secondly, for delay-sensitive applications, pro-

cessing on nearby devices reduces the Network Propagation Delay and, thus, the

latency of applications. By adding a layer closer to the data source in the cloud

architecture, fog computing addresses the significant challenges associated with

traditional cloud computing.

In line with its definition as an extension of the cloud, NIST proposed three service

models for fog computing [65]: Software as a Service (SaaS), Platform as a Ser-

vice (PaaS), and Infrastructure as a Service (IaaS). They also define deployment

models mirroring those of cloud computing: private fog node, community fog node,

public fog node, and hybrid fog node. Furthermore, the NIST conceptual model

23

identifies autonomy, programmability, manageability, heterogeneity and hierarchi-

cal clustering as the key attributes of fog computing.

2.4.1 Fog Computing Features

Features of fog computing include heterogeneity, low latency, location awareness,

geographical distribution and mobility. These are discussed briefly here.

Heterogeneity

Fog Computing uses resources on devices at various layers of the network to pro-

vide services to end users and the cloud. Devices vary in several ways, including

processing power, network capabilities, proximity to end-users and mobility. Ad-

ditionally, the network infrastructure also varies from high-speed fibre links to

wireless access technologies such as Wi-Fi, 4G, and ZigBee. Furthermore, devices

in a fog system are run and owned by different providers. In a clustered archi-

tecture, for example, each cluster may be operated by a different provider with a

different platform from other domains [26].

Low Latency

Fog nodes may be any device across the network: routers, switches, gateways, road-

side units, etc. As these devices are closer to the end-user than are cloud servers,

processing on fog nodes will reduce the response time users experience. This is

especially useful for Ultra-Reliable Low-Latency Communications (URLLC) ap-

plications in which the delay in reaching and getting a response from a remote

server affects the Quality of Experience of the user [9, 66]. This reduced latency

will be crucial for emerging technologies such as Tactile Internet [67].

24

Geographical Distribution

Fog computing takes advantage of resources across various levels of the network,

which are closer to and at the edge. This brings together devices from a widespread

geographical area. It also provides a distributed, decentralised architecture with

nodes carrying out specified tasks for user devices within their defined area and

sending more demanding tasks to a central server [68].

Context-Awareness

Due to the geographical distribution of fog nodes discussed above, fog nodes can

provide a more accurate context of the end user(s) they serve compared to cen-

tralised cloud servers. Context-specific data such as location, activity of other

users and network load are helpful for specific applications such as Intelligent

Transport Systems (ITS) [34]. Context information can be exploited to improve

services and resource allocations. Each fog node is responsible for a pre-defined

area or task, and so the location of the end user is linked to the fog node. In a

traditional cloud computing setup, all users connect to a centralised location or

set of locations, which makes it difficult to provide location-tailored solutions.

Mobility

Mobility in Fog Computing can be viewed in two ways: supporting mobile end-

user devices [69] and mobile fog nodes [70]. Since fog nodes are distributed and

coordinated to support the cloud, they are best placed to support situations where

users move from location A to B while still having a request on a Fog Node in

location A. Several researchers have proposed mechanisms for dealing with mobil-

ity support, especially for transport applications [71, 72]. Additionally, mobile fog

nodes are expected in fog computing. In specific applications, such as transport,

some scenarios involving mobile fog nodes have been proposed [73]. These devices

have processing, network and storage resources that are available to end users, but

they are also mobile and may change their location.

25

The above features make Fog Computing best suited for new IoT applications that

involve real-time interaction between users and processing points. Several studies

have proposed fog-based application areas and case studies. The following section

discusses the use of fog for IoT in industry, healthcare and transportation.

2.4.2 Fog Applications

Fog computing improves the quality of applications in domains such as industry,

smart cities, transport, and healthcare. This section discusses fog-IoT applications

in industry, transportation, and healthcare.

Industry

The fourth industrial revolution, also known as Industry 4.0, is fundamentally

transforming manufacturing and industrial operations through the integration of

cyber-physical systems, IoT devices, and advanced computing paradigms like fog

computing. The first industrial revolution was driven by mechanisation and steam

power. Later, the discovery of electricity made the assembly line possible and ush-

ered in the Second Industrial Revolution. The third industrial revolution used

computers for automation in the manufacturing process. Now, in the fourth in-

dustrial revolution, Industrial IoT (IIoT) has introduced Cyber-Physical Systems

(CPS) and is making machines smart.

Smart Manufacturing and Factories: Smart factories leverage extensive sen-

sor networks to monitor and automate processes on the factory floor [74]. Fog

computing plays a crucial role in enabling real-time decision-making by process-

ing sensor data locally rather than sending it to distant cloud servers [75]. For

example, in automotive manufacturing, fog nodes can process vibration data from

assembly line equipment to detect anomalies and prevent costly breakdowns before

they occur. This local processing reduces latency from hundreds of milliseconds

to single-digit milliseconds, enabling immediate corrective actions [76].

26

Predictive Maintenance: Industrial fog computing enables sophisticated pre-

dictive maintenance strategies by analysing equipment sensor data in real-time.

Machine learning models running on fog nodes can detect patterns indicating

impending equipment failure, allowing maintenance to be scheduled proactively

rather than reactively. This approach reduces unplanned downtime by up to 50%

and maintenance costs by 10-40% compared to traditional scheduled maintenance

approaches [77]. Recent studies demonstrate that fog-enabled deep learning mod-

els in smart factories can predict equipment failures with high accuracy, reducing

downtime and maintenance costs by 60% [78].

Quality Control and Inspection: Computer vision systems deployed on fog

nodes can perform real-time quality inspection of manufactured products. High-

resolution cameras capture images of products as they move through production

lines, and fog-based image processing algorithms identify defects within millisec-

onds. This enables immediate rejection of faulty products and adjustment of

manufacturing parameters, significantly improving overall product quality and re-

ducing waste.

Energy Management: Industrial facilities consume significant amounts of en-

ergy, and fog computing enables intelligent energy management through real-time

monitoring and optimisation, as fog computing aims to reduce energy consumption

in industrial sensor networks [75]. Fog nodes can process data from smart metres,

environmental sensors, and equipment monitors to optimise energy consumption

patterns, integrate renewable energy sources, and participate in demand response

programmes.

Supply Chain Optimisation: Fog computing enhances supply chain visibility

and responsiveness by processing RFID, GPS, and sensor data from goods in tran-

sit. Local processing enables real-time tracking of inventory levels, environmental

conditions during transport, and automatic reordering when stock levels reach

predetermined thresholds.

27

Process Optimisation: In continuous manufacturing processes such as chemical

production or steel manufacturing, fog computing enables real-time process optimi-

sation by analysing sensor data from temperature, pressure, and flow sensors. This

local processing capability allows for immediate adjustments to maintain optimal

operating conditions and product quality whilst minimising energy consumption

and waste generation.

Transportation Systems

The need to efficiently manage and improve security in transportation systems

motivated the concept of Intelligent Transportation Systems (ITS) [79]. Approx-

imately eight million traffic accidents occur annually and are responsible for 1.3

million fatalities [80]. Also, in 2017, UK drivers wasted 31 hours in rush-hour traf-

fic, costing each motorist over one thousand pounds [81]. Likewise, the European

Union (EU) spent 4% of its Gross Domestic Product (GDP) on transportation

issues in 2011 [82]. Intelligent Transportation Systems use modern sensing and

communication technologies (IoT) to improve transportation and transport man-

agement.

Vehicular Ad-hoc Networks (VANET) enable communication between vehicles and

other vehicles and between vehicles and road infrastructure, cloud servers and

users [83]. VANET has evolved into the Internet of Vehicles [84]. To process

data in the Internet of Vehicles efficiently and close to the data source, researchers

have proposed fog-based vehicular systems. In [85], Fog Vehicular Computing

uses packed vehicles with computing resources to process data produced by other

vehicles and end devices. The authors in [86] proposed Vehicular Fog Computing

for a city-wide transportation management system. Fog computing has also been

proposed to manage transportation security. Neto et al. [87] proposed a fog-based

crime detection system for transportation systems. Furthermore, Darwish et al.

[80] proposed an architecture for managing and analysing big data in Intelligent

Transportation Systems.

28

Figure 2.3: OpenFog smart car and traffic control system [63]

Figure 2.3 shows the OpenFog smart car and traffic control system [63]. The figure

shows how different aspects of an intelligent highway system may work together.

Drivers and passengers access the internet using an access point in the vehicle.

Smart vehicles communicate with themselves using VANET’s vehicle-to-vehicle

communication. They also send relevant sensed data to manufacturers, service

providers, and various cloud servers. Smart vehicles cannot rely on the cloud to

process real-time data because the delay may lead to slower decision-making by

vehicles, resulting in late decision-making and undesired outcomes. Smart traffic

lights control traffic intelligently using data from roadside traffic cameras, roadside

units, and vehicle and pedestrian sensors. Moreover, data is sent to metropolitan

traffic cloud servers to support long-term decision-making for the entire system.

The system shows how fog computing will work with cloud computing rather than

replace it entirely.

29

Healthcare

The authors in [88] identified five ways technology is used in healthcare: health

promotion and disease prevention, diagnosis, monitoring, treatment and support-

ing health services. They also found that the dominant m-health technologies

in an era was based on the predominant devices and technologies used in that

era. For example, in the early 2000s Personal Digital Assistants were popular and

thus PDA applications for m-health dominated the research on m-health. Also, in

recent years mobile apps have dominated due to the popularity of smartphones.

Advances in health IoT devices are expected to drive m-health applications [89].

M-Health applications range from disease management applications such as mea-

suring blood sugar level to control insulin dosage (in the management of diabetes),

monitoring vulnerable patients through fall detection and tracking fitness with

wellness applications [90].

IoT applications in healthcare present unique challenges that cannot be resolved

with traditional cloud computing. One such challenge is the low latency require-

ment of some health applications. In emergencies, the difference between life and

death may be down to a few milliseconds. Also, applications such as ECG moni-

toring produce constant streams of data, which may not be useful to store in the

cloud. Such data is monitored to detect abnormal signals which require medical

attention. Sending all that data to the cloud is counterproductive. Furthermore,

medical sensors are expected to be lightweight with small form factors to ensure

they are not cumbersome for the user to carry around [91]. This requirement

makes the option of processing within the sensor infeasible as including process-

ing and storage components will increase the weight and form factor of sensors.

Additionally, the risk of failure is higher when data is sent for processing several

hops away from the data source. In [92], the authors recorded a 50% frame loss

rate when testing their emergency pre-hospital communication system using cloud

servers. They proposed edge processing of the data as a possible solution.

It can be seen from the above discussion that there is a wide range of domains in

industry, transportation, and healthcare that use or could be improved with IoT

30

Figure 2.4: Ubiquitous Healthcare System with Cloud [93]

and cloud computing. Enhancing cloud computing with fog extends the possible

applications even further. The healthcare domain is unique because it encompasses

several different varieties of use cases, each with its own set of requirements. Figure

2.4 shows ubiquitous healthcare system. With the increasing numbers of IoT

devices, all expected to use the internet and the inherent challenges with some

healthcare applications, a thorough investigation of healthcare requirements is

required to inform the design of suitable system management schemes such as

schedulers for Fog Computing. In chapter 5 a use case of fog computing with

Electroencephalography (EEG) monitoring is presented.

31

2.4.3 Fog Architectures

A review of the literature on fog computing architecture shows a wide range of

approaches and designs. The variety stems from two facts about fog computing.

First, fog computing as a computing paradigm is still in its infancy and has not yet

fully developed. To the best of this researchers knowledge there are no real-world

full implementations of fog yet. Architectures for fog are therefore constantly

being proposed and refined by research communities. Secondly, fog computing

encompasses several fields associated with computing, and each of these fields

have their own approaches and styles for developing architectures. The different

architectures are thus a reflection of the different notions of architectures in the

fields involved [94]. Fog computing involves networking, programming, hardware,

services to name a few. Each of these fields have different communities and views

of the concept of architecture. Mann [94], presents an analysis of the different

views of architecture in fog computing and proposes a three-dimensional framework

for engaging with fog computing architectures. The three dimensions of Manns

framework are the devices dimension, the system dimension, and the functionality

dimension.

The device dimension is often the focus of the networking community and com-

prises different nodes and the links between them. The device dimension has a

widely accepted three-layer architecture shown in figure 2.2. Most proposed device

architectures are slight variations of the three-layer architecture. Variations have

been made to the bottom layer [95] and the fog layer [96]. The systems dimen-

sion describes the hardware, software, and service layers for fog. This dimension

includes proposals for virtualisation, middleware, applications, and operating sys-

tems. The functionality dimension includes the architecture of specific components

that make fog functional. These include resource and service management as well

as application-specific functional architectures, which have been proposed for spe-

cific applications like healthcare and smart cities. Mann [94] points out that these

dimensions are independent from each other, although each of them is important

in all fog systems. This section presents a review of some fog architectures related

32

to resource management and middleware. Although resource management is a

functional task under the functionality dimension and middleware fall under the

system dimension in Manns framework, it is important to present a general discus-

sion of fog architectures to properly situate resource management and middleware

in fog systems.

Figure 2.5: The Four our Fog Deployment models [63]

33

The OpenFog Consortiums Fog Reference Architecture has been adopted by the

IEEE as IEEE Standard 1934-2018 [63]. It consists of multiple layers of fog nodes

between IoT things and the cloud. Sublayers of the fog layer have varying degrees

of computation power, storage, and other resources available to the system. Each

layer of fog nodes may carry out some level of computation, and higher layers, that

is, those closer to the cloud, carry out more demanding tasks. The reference ar-

chitecture also presents four fog deployment models, as shown in figure 2.5. In the

first model, the system is independent of the cloud. This is useful for applications

that cannot use the cloud due to regulatory requirements, security, or unavail-

ability, such as military or healthcare. In the second model, the system relies on

cloud servers for tasks that are not delay-sensitive, while the fog layer carries out

operational functions and some delay-sensitive tasks. This model is envisioned for

use cases such as building management and retail. In model three, the fog layer

performs delay-sensitive processing tasks, and the cloud performs operational and

control functions. Model four is like a traditional cloud deployment; the cloud

does most of the processing. The role of fog, if any, is limited to monitoring and

safety control.

Other reference architectures include the Clouds Lab Architecture [97] and the

Cisco Architecture [3]. What these architectures have in common is a view of Fog

as a layer with limited resources providing services to both user devices and the

Cloud. The resources provided by fog nodes are limited, and in applications such

as healthcare, would be more critically needed by some users than others. Also,

the fog nodes at a given layer may be capable of coordinating with each other and

with other nodes along the continuum [98]. This presents a corporative system

with resources available from different fog nodes available to the end user. Several

application-specific architectures have also been proposed for fog computing. Ar-

chitectures have been proposed for healthcare [99], smart cities [96]. Mouradian et

al. [19] grouped fog architectures into application specific and application agnostic

architectures.

34

2.5 Reliability

Reliability is the ability of a system to behave as expected and complete tasks

promptly over a specified period. It is primarily user-centric. Users judge the

reliability of a given system differently because of different requirements and ex-

pectations from the system. The reliability of software systems is linked to failure

and recovery from failure. Reliability metrics include:

1. Mean Time to Failure (MTTF): the average time for system failure.

2. Mean Time to Repair (MTTR): the average time it takes to repair the system

when it fails.

3. Mean Time Between Failures: how long the system is unavailable. It is the

sum of MTTF and MTTR

4. Availability: the probability that the system is in operation at a given time.

The regular reliability models for traditional software cannot be applied directly to

the cloud computing environment [100]. For cloud service users, service availability

is an important consideration for reliability. Cloud Providers pledge near-perfect

availability (99.99%) in SLAs [101].

Cloud service users adopt fault tolerance strategies such as redundancy to improve

reliability [102]. Dai et al. [103] analysed cloud computing and developed relia-

bility models for cloud services. There is currently no comprehensive model for

reliability in fog computing in the literature.

2.6 Middleware

Gateways are an integral part of IoT [44, 104]. They serve as a bridge between

IoT sensors and the internet [104]. Gateways are usually the first hop from an IoT

35

device towards the internet. They solve the challenge of communication hetero-

geneity between IoT sensors and mobile communication networks or the internet

by providing interfaces for multiple network protocols, such as Bluetooth, ZigBee,

6LoWPAN, etc., at the IoT end and internet protocol towards the internet. Thus,

the Gateway receives data from various sensors of diverse protocols and sends them

using LTE, 5G, DSL, Wi-Fi etc. over IP network to fog or cloud servers. Moreover,

in fog computing, gateways have assumed additional functions [29]. Aazam et al.

[105–107] present the smart gateway, a gateway that preprocesses data received

from sensors before forwarding to fog nodes or cloud servers. The smart gateway

is a fog node because it performs some tasks (data filtering, trimming, reconstruc-

tion, etc.) before forwarding data to the cloud. The smart gateway as a fog device

has been implemented for healthcare applications [108]. Despite being closest to

the data source and thus having the quickest connection time to end devices, gate-

ways usually have much limited resources compared with other devices higher up

the architecture, therefore, they are limited in the workload they can take on to

support the cloud in a fog system. Smart gateways have the advantage of being

closest to IoT devices, however, because they serve as a means for IoT devices to

access services, they constitute a single point of failure in an IoT system.

Middleware has also been proposed to provide an abstraction layer to solve ar-

chitecture mismatch problems associated with connecting IoT Systems with cloud

computing [24]. Figure 2.6 shows the role of middleware for the Cloud of Things

(CoT) proposed by Farahzadi et al. Middleware hides the complexity and hetero-

geneity of a system and makes it easier to develop applications for it [109]. Nastic

et al. [110–112] have introduced provisioning middleware for IoT clouds at the

edge, similar to fog computing. Their middleware has components in the cloud

and on gateway devices close to IoT devices.

2.6.1 Key Middleware Challenges in Fog Computing

The integration of middleware in fog computing environments presents several

critical challenges that current approaches have not adequately addressed:

36

Figure 2.6: Role of middleware in Cloud of Things [24]

Resource Management Complexity: Existing gateway-based middleware so-

lutions struggle with efficient resource allocation across heterogeneous fog nodes.

Smart gateways, whilst providing local processing capabilities, have limited com-

putational resources that constrain their ability to handle complex workloads or

coordinate with other fog nodes.

Reliability and Fault Tolerance: The single point of failure problem inherent

in gateway-centric approaches creates reliability vulnerabilities. When a smart

gateway fails, all IoT devices depending on it lose connectivity and services, high-

lighting the need for distributed, fault-tolerant middleware architectures.

Heterogeneity Management: Current middleware solutions provide basic pro-

tocol translation but lack comprehensive management of resource heterogeneity

across fog nodes with varying computational capabilities, storage capacity, and

network connectivity.

Cooperative Resource Utilisation: Existing approaches do not fully exploit

37

the potential for cooperation between fog nodes. Most middleware implemen-

tations treat gateways as isolated processing units rather than components of a

collaborative fog infrastructure.

These challenges directly motivate the middleware approach proposed in this the-

sis. Unlike existing gateway-centric solutions that focus on individual device func-

tionality, the proposed middleware provides:

Distributed Resource Management: Rather than relying on resource-limited

gateways as single processing points, the middleware coordinates resource alloca-

tion across multiple fog nodes to optimise system-wide performance.

Fault-Tolerant Architecture: By enabling fog nodes to cooperate and provide

backup services for each other, the middleware eliminates single points of failure

inherent in current smart gateway approaches.

Comprehensive Abstraction: The middleware hides not only protocol het-

erogeneity but also resource heterogeneity, enabling applications to utilise fog

resources transparently without knowing which specific fog node executes their

tasks.

Cooperative Processing: The middleware enables fog nodes to share workloads

and resources dynamically, maximising utilisation of available resources across the

fog layer rather than being constrained by individual gateway limitations.

2.7 Related Work

The previous sections presented an overview of IoT, cloud, and fog computing.

Their goal was to provide a background to the areas of research this thesis will

contribute to. This section will build on this background by presenting the current

relevant literature and highlighting the gaps in knowledge. The section will end

with an analysis of these gaps and restate the aim of this work.

38

2.7.1 Resource Management in Fog Computing

Resource management at the fog layer is critical for two main reasons. First, un-

like the cloud, the fog layer is resource-constrained. Most devices at the fog layer

have a different primary function within the network; working as a fog node is a

secondary function [62]. They may also have smaller form factors and processors

[113]. Secondly, fog nodes are heterogeneous in various ways. They differ/vary in

architecture, resource availability, power and speed, to name a few. The process-

ing, network and storage resources at the fog layer must, therefore, be managed

to achieve the desired level of performance. The CPU, memory, network, virtual

machines, and energy resources at the fog layer must be managed to ensure that

processing can be done by fog nodes without impacting the networking or other

functions of fog nodes and without violating Service Level Agreements for appli-

cations. Furthermore, at the fog layer, several fog nodes in a domain may be able

to share resources for efficient execution of tasks [98, 114]. In such a scenario, the

resources within the fog domain must be managed for efficient utilisation.

In an early work on resource provisioning in fog computing, Agarwal et al. [115]

used a fog server manager to allocate resources on fog nodes to service requests

from clients. In their architecture, requests which cannot be serviced by a fog

node are forwarded to the cloud. There is no cooperation among fog nodes. Ki-

movski et al. [116], proposed an architectural approach modelled after the human

brain to achieve adaptive resource management at the fog layer. Task offloading

across different layers in the fog architecture has been investigated by researchers

as a resource management approach. Papers [117, 118] adopt greedy heuristic

approaches to offloading tasks. Mahmud et al. [119] tackle the problem from a

Quality of Experience (QoE) perspective. They use fuzzy logic to prioritise appli-

cation placement requests. In [62], ENORM, a framework for dynamically man-

aging resources on edge nodes is presented. Resource Management on ENORM,

however, involves the cloud and is therefore not ideal for applications that are

delay-sensitive. Also, ENORM focuses on resource management on a single fog

node; it does not do so for multiple nodes cooperatively.

39

In paper [98], Zhang et al. adopt a hierarchical approach to resource management

in a cooperative fog computing system for intelligent transportation systems. Re-

sources are managed by a coordinator fog node which collects relevant information

from other nodes within a domain. Reliance on a coordinator server, however,

presents a single point of failure for the system.

2.7.2 Reliability in Fog Computing

In an early work on reliability in fog computing, Madsen et al. [120] discussed

how reliability is achieved and evaluated in cluster, grid and cloud computing

and extended the discussion to reliability in fog computing. The discussion on

fog, however, focuses on Wireless Sensor and Actuator Networks. Checkpointing,

replication and rescheduling are used to ensure reliability in cluster and grid sys-

tems. The authors in [121] also briefly present a mathematical model of network

reliability in Multi-state Cloud Networks with fog nodes. They also present an

algorithm for evaluating reliability in such systems.

Two works focus mainly on the reliability of fog computing itself. Firstly, Popentiu-

Vladicescu and Albeanu [122] reviewed the reliability of fog computing, looking at

three aspects: reliability of fog nodes(hardware), reliability of network and reliabil-

ity of software. They present a brief discussion of the importance of reliability and

why it is crucial for fog IoT applications. Furthermore, they look at the reliability

of IoT sensors and their impact on the system’s dependability. They also discuss

the Open Fog Reference Architecture and its RAS pillar (Reliability, Availability

and Serviceability).

The other work on reliability in fog computing is reported in paper [123]. The pa-

per identifies features of mobile operating systems that make them unreliable for

use as fog nodes. Using the Android operating system, the authors provide solu-

tions to the problems identified. The goal of their solution is to make the Android

OS capable of running applications with strict time requirements. The challenges

they identified are the lack of prioritisation in the software stack of mobile OS and

40

the presence of services that preempt running applications, resulting in pauses

during execution. The changes they make in Android include allowing develop-

ers to specify the time requirements of the applications, incorporating priorities

in the communication model, implementing pause-less memory management and

specifying real-time behaviours in APIs.

2.7.3 Fog Middleware

The importance of middleware/abstraction in fog architectures has been discussed

since the early days of fog computing. In [10], Bonomi proposed a fog abstraction

layer to hide heterogeneity and manage resources at the fog layer. Nath et al. [29]

also identifies the need for middleware at the fog layer to control the network and

other resources on fog nodes. Moreover, Aazam et al. [124] view the entire fog

layer as a middleware for Cloud Computing. A few proposals for fog middleware

have been presented.

Middleware have been proposed for network-edge paradigms. Table 2.2 presents

middleware proposed for fog and other network-edge paradigms. Most of the pro-

posed middleware have been for Mobile(Multi-Access) Edge Computing (MEC).

In paper [125], the authors developed middleware for managing computation at

the network’s edge for mobile users. Rodrigues et al. [126] also designed a mid-

dleware for mobile edge-clouds with the publish-subscribe approach. In another

mobile edge middleware [109], Carrega et al. present Mobile Edge Computing

as a type of fog computing. Their middleware solution focuses on the deploy-

ment of distributed applications by developers. Additionally, Orsini et al. in two

works present and evaluate a self-adaptive middleware for task offloading in a mo-

bile environment [127, 128]. Middleware for Mobile Edge Computing are popular

because the end devices in MEC are mobile phones. Most of the middleware for

Mobile Edge Computing have a distributed architecture with mobile phones acting

as agents and other components stored on the cloud or edge processing devices.

Mobile phones, although resource-constrained, have much more processing and

41

storage resources than IoT sensors. Thus, these middleware are not well-suited for

IoT applications.

Table 2.2: Middleware for Fog and Edge Computing

Paper Functionalities and Applications Limitations

Strengths

[114] Distributed task execu-

tion on fog nodes

Seismography No mobility support

[129, 130] Service-Oriented ap-

proach

Smart City appli-

cations and Cyber-

Physical Systems

No direct communica-

tion between fog nodes

Flexible to add addi-

tional services

Monitors services with

multi-agent

[56] Selection of best edge

nodes for execution of

tasks

Object detection ap-

plications

Requires prior knowl-

edge of users movement

path for mobility sup-

port.

Supports mobility

[35] Data filtering Greenhouse IoT ap-

plications

Limited to a single ap-

plication (Farm IoT)

[131] IoT application life-

cycle management

Generic

[132] Secure end-to-end com-

munication for end de-

vices, edge nodes and

cloud

Generic Focused only on secu-

rity

42

[133] Compliance with

Organisation for Eco-

nomic Cooperation and

Development (OECD)

privacy policy for

Health IoT

Healthcare Has a very specific

function. Focused on

privacy in healthcare

[53] Task scheduling Generic Only the architecture is

presented

Data acquisition

[109] Distributed application

deployment

Generic Developed for a Mobile

Edge Computing (tele-

com networks)

[125] Task offloading Augmented reality

application

Management of appli-

cation modules across

devices in cloudlet

[126] Distributed processing Content delivery ap-

plication

Designed for mobile

edge-clouds

Publish-subscribe ser-

vice

Emergency rescue

application

Distributed file storage Distributed face

recognition

[134] Distributed processing

on IoT devices with no

cloud support

Generic Not suitable for large

scale deployment

Distribution of data

among IoT devices

Realtime data analysis

[127, 128] Task offloading Generic For Mobile Edge Com-

puting

43

Self-adaptive manage-

ment of nodes

Supports mobility

The works in [135, 136] present fog middleware architectures. Paper [135] presents

Distributed IoT-Fog Architecture for Application Management (DIFAAM) to man-

age the life cycle of applications as they are run within the fog or cloud. Its goal

is to ensure that application requirements are met by processing nodes before as-

signing tasks to nodes. Pore et al. [136] propose another architecture for fog and

edge middleware. Their focus is on task scheduling and data collection in mobile

fog environments.

Studies by Nader et al. [129, 130, 137] present a Service-Oriented Middleware

approach for fog computing. In [129], a Service-Oriented Middleware approach is

adopted for a smart city. The middleware abstracts system resources as services

made accessible to devices across all layers in the system. The authors implement

their middleware for a cyber-physical system in [130]. The Service-Oriented ap-

proach makes it possible to add new services after deployment. Also, a Service

Oriented Middleware provides flexibility for large-scale IoT applications [137].

Paper [114] presents a Fog-based middleware for distributed cooperative data pro-

cessing at the fog layer. Their proposed middleware fog nodes have two modes:

they either work together on a task or work independently. Like the other mid-

dleware proposed for fog computing, their system is implemented in a specific

application - subsurface imaging and monitoring.

Shekhar et al. [138] use middleware for task offloading in a mobile IoT environ-

ment. Their middleware manages resources across all layers of the fog architecture,

intending to ensure that service-level objectives are met even when edge devices

are mobile. Their proposed solution, however, requires prior knowledge of the

users movement, which is not practical in real-life scenarios. Other middleware

have been proposed for privacy and security in fog systems [132, 133]

44

2.7.4 Research Gaps

Despite the widespread interest in fog computing, there are not, to the best of our

knowledge, works that examine the role of middleware in fog resource manage-

ment. Given that the challenges that fog computing presents, that is, heteroge-

neous nodes, unreliable actors and a dynamic environment, are addressed through

middleware in other distributed systems [139], the use of middleware for resource

management makes for an interesting area for research.

Some research studies propose fog middleware approaches that have not been

evaluated; others propose solutions for specific use cases and applications. There is

a dearth of studies that study all aspects of resource management in fog computing

and propose a middleware to address them. Also, there is a need for studies that

look at the middleware problem in fog computing holistically instead of targeting

specific applications.

Research on resource management in fog computing has focused on specific tasks

such as task scheduling, task offloading and application placement. Additionally,

some approaches rely on cloud servers for some resource management tasks. Fur-

thermore, although middleware has been used classically in distributed systems

to manage the resource management challenges in fog, such as heterogeneity, the

use of middleware in fog computing for resource management has not been fully

explored. Middleware proposed for fog computing is either limited to specific

applications or does not fully meet the requirements of fog architectures. For in-

stance, although cooperation between fog nodes in the same fog domain has been

presented in most architectures, few resource management approaches involve co-

operative fog resource management. Moreover, interfaces between different layers

of the Fog-IoT architectures have not been proposed. Furthermore, because of the

dynamic nature of the fog environment, resource management has to be adaptive—

adaptive approaches to system management can be achieved through middleware.

Reliability is also an essential aspect of fog applications. Aspects of reliabil-

ity, like timeliness and availability, are necessary for delay-sensitive applications.

45

Notwithstanding, existing approaches to fog application management have not

considered reliability. Particularly, it is unclear how the approach to resource

management and other techniques employed in fog computing will affect the per-

formance(reliability) of applications.

To maximise the use of available resources at the fog layer for the end-user devices

and cloud, this thesis proposes and evaluates a layer of abstraction that hides the

details of the fog layer from devices at the end-user. Middleware will integrate

communication, node management, task scheduling, task offloading at the fog

layer. It would also handle interactions between the fog layer and the cloud and

IoT devices. It is posited that, because fog nodes have limited resources and vary in

the resources they can provide, using a middleware between the fog and users will

enable fog nodes to rely on other fog nodes within the system to provide services

requested by users, without the users knowing which fog node completed the task.

This approach enables transparent resource sharing among fog nodes, allowing the

system to optimise resource utilisation without exposing infrastructure complexity

to end users.

2.8 Summary

The goal of this chapter was to situate the work presented in the rest of this thesis

in the context of research in fog computing. The chapter overviewed IoT, cloud

computing, and fog computing. The chapter proceeded with a presentation of the

nature of the fog environment, which led to a discussion on the need for resource

management in fog computing. Current literature on fog resource management was

then discussed. The second part of the paper reviewed related work on resource

management, middleware and reliability in fog computing to highlight the gaps

this thesis will investigate.

The growth of IoT and its attendant demands on cloud computing contributed

to the emergence of several computing paradigms targeted at making computa-

tion resources available to users at the network edge. The evolution of these

46

paradigms has culminated in the emergence of fog computinga paradigm that ex-

tends the cloud by using available resources between the cloud and users. The

fogs heterogeneous and dynamic environment requires effective resource manage-

ment. However, although middleware has been used for resource management in

distributed systems, there is a dearth of research that addresses holistically the

use of middleware in fog computing. This thesis seeks to make contributions in

this regard.

The next chapter builds on this one by presenting the approach used to address

the gaps identified here. The following chapters will then present the contributions

made in these areas.

CHAPTER 3

Research Design

This chapter introduces the research design, discusses each component, and ex-

plains the rationale and justification for using the chosen approach over other

options. The goal is to show how the aim of this thesis has been achieved. Thus,

this chapter is key to understanding the chapters that follow, which implement

the framework set out in this chapter.

3.1 Research Approach

This thesis investigates the use of middleware for efficient resource management at

the fog layer in fog computing. It is hypothesised that, given the nature of the fog

architecture and environment, middleware would play an important role in the

reliability of fog computing, particularly for delay-sensitive applications. Much

work has been done on the aspects of resource management at the fog layer, which

would target improving specific areas. However, as the entire system relies on a

combination of various schemes, it is argued that middleware at the fog layer, how

it is implemented, and the resource management techniques and algorithms used

will affect the reliability of applications.

The research design is broadly in two parts: the middleware design phase and

the experimentation and evaluation phase. The first phase aimed to investigate

47

48

Figure 3.1: The Research Design used in the thesis

the need for middleware in fog computing and select the features necessary for

the middleware. The second phase involved the evaluation of the design decisions

made through simulation and the final middleware design.

The research design encompasses four stages, as illustrated in Figure 3.1. An

iterative approach was employed for middleware development, whereby evalua-

tion results from each proposed solution informed subsequent design decisions and

feature enhancements. This iterative methodology is evident in the progressive

development of core features presented in Chapters 5, 6, and 7.

The simulation results presented in Chapter 5, which examined processing user

requests within a single cluster, demonstrated that response times could be im-

proved by utilising alternative nodes when the closest node is occupied with other

requests. These findings directly informed the multi-cluster approach proposed

in Chapter 6, which enables the utilisation of neighbouring clusters for request

processing based on predefined conditions.

Subsequently, the evaluation of the multi-cluster approach revealed limitations in

scalability, necessitating a more distributed solution. This insight led to the de-

velopment of the peer-to-peer distributed approach presented in Chapter 7, which

49

addresses the scalability constraints identified in the earlier centralised and multi-

cluster architectures.

This iterative progressionfrom single cluster to multi-cluster to fully distributed

approachesdemonstrates how empirical results systematically guided the evolution

of the middleware design towards increasingly sophisticated and scalable solutions.

The following section discusses the methods which are being used to achieve the

objectives outlined in section 1.3.

3.2 Feature Analysis and Selection

In the first stage of the research, a study was conducted to ascertain the properties

and specifications of the proposed middleware. Several researchers have reviewed

the resource management problem in fog computing [19, 140]. This study aimed to

define the problem of resource management in fog computing clearly and outline

the specifications required for proposed solutions. Thus, a review of the literature

on fog resource management was conducted. Additionally, proposed approaches to

resource management in fog, IoT and cloud computing have been studied to under-

stand existing approaches. The goal of this study was to address the first question

for the research study: What features should a middleware for resource manage-

ment in fog computing have?. Literature was used from the following repositories:

IEEE Xplore, ACM Library, Elsevier/Science Direct and Springer journals.

To answer the question, aspects of fog resource management are selected from the

literature on fog resource management. Then, an analysis of the resource manage-

ment problem in fog computing was conducted. Based on the analysis, the prop-

erties and features of the middleware were selected. This process is documented

and presented in chapter 4. Other researchers have used the approach adopted.

For example, in [141], the authors surveyed adaptive resource management tech-

niques in cloud computing as part of a process to develop a brownout approach to

cloud resource management. Since there are no fully deployed fog systems, there

50

is a dearth of empirical data and findings on fog computing. Consequently, the

approach used in this study relies on existing fog resource management proposals.

3.3 Middleware Approach to Fog Resource Management

A detailed framework for the middleware is developed based on the analysis of

the findings in step one and the chosen features. The framework includes the fog

middleware’s architecture, model, and features. As the research was conducted

using an experimental approach, the middleware design was revisited iteratively

based on the outcomes of evaluating middleware features. The final middleware

design presented in the next chapter is a culmination of the iterative process and

is illustrated in the feedback loop in figure 3.1.

3.4 Design and Development of Middleware Features

The third aspect of the research involves the development of the properties and

features of the middleware. For each component developed, the problem it will

address was analysed and stated, followed by a system model, the proposed solu-

tion (the middleware feature), and an evaluation of the solution. The approach is

illustrated in figure 3.2. It is used for the evaluation of the middleware features

presented, which are detailed in chapters 5, 6 and 7.

1. System Model and Environment: defines the system model or environ-

ment that the middleware feature operates it.

2. Problem Definition: states the problem the middleware will be addressing

in the system for the given environment or scenario.

3. Proposed Solution: the algorithm, technique, or framework developed to

solve the problem.

51

Figure 3.2: Middleware Feature Design and Evaluation Approach

4. Evaluation: The proposed systems in this thesis are evaluated via simu-

lation experiments. The simulation tools used and the rationale for their

selection are presented in the next section.

3.5 Evaluation Metrics and Results

The final stage of the research approach was the testing and evaluation of the

middleware components. The evaluation was not a terminal stage but is part of

the development of each module as discussed in the previous section. The goal

of the evaluation was to improve the performance of modules based on relevant

metrics. The objective of the evaluation is to study and improve the reliability of

the application involved.

Reliability is defined by ISO [142] as the ability of a system or component to

perform its functions under stated conditions for a specified period of time. The

performance metrics used include response time(delay), utilisation, network usage

and energy consumption

52

Response time

measures the delay from when data leaves its source until the response/output ar-

rives at the processing point. It is the sum of the processing delays and propagation

delays. The response time is the most common metric in fog and edge simulations

[143]. Response time is measured in seconds (in milliseconds, microseconds, etc.).

As discussed in earlier chapters, a key objective for fog computing is to minimise

response time. The response time is expressed as:

R =
N∑
i=1

Tp,i +
M∑
j=1

Tprop,j (3.1)

where R is the total response time; Tp,i is the processing delay for the i-th device,

including computation and queuing delays; Tprop,j is the propagation delay for the

j-th connection, representing the time taken for data to travel between nodes;

N is the total number of processing devices; M is the total number of network

connections.

The objective in fog computing is to minimise R.

Utilisation

Measures the resources consumed by devices within the system. Mathematically

[144],

Ui = XiSi (3.2)

where Ui is utilisation of device i, Xi is throughput (the rate per unit time at

which requests can be serviced by the device) and Si is service time(the time taken

to service a request).

In the studies presented in this thesis, the utilisation of systems under different

configurations are measured to compare how well resources are utilised.

53

Network Usage

The amount of data transmitted and processed within the system is measured as

network usage, which allows us to measure the system’s scalability. The system’s

network usage is measured in megabytes.

Energy Consumption

Energy consumption measures the total energy utilised by nodes in the system

during their operation. This is critical for fog nodes because of the limited power

supply available to them. The dynamic energy consumption of nodes is calculated

using:

E = Pstatic × T +
N∑
i=1

Pdynamic,i × Ti (3.3)

where E is the total energy consumption (in joules), Pstatic is the static (idle) power

consumption (in watts), Pdynamic,i is the dynamic power consumption for task i (in

watts), T is the total time the system is operational (in seconds) and Ti is the

time taken for task i (in seconds)

The selection of these evaluation metrics is guided by two fundamental consid-

erations. First, the chosen metrics align with established evaluation frameworks

in fog computing research, particularly in the domain of resource management.

Metrics such as response time, network usage, and energy consumption represent

the most widely adopted performance indicators for evaluating fog architectures

[19, 97, 145, 146], ensuring that the results of this study can be meaningfully com-

pared with existing research and contribute to the broader body of knowledge in

the field.

Second, the inclusion of utilisation metrics directly addresses the core objective of

this research: to evaluate the proposed middleware framework and its associated

services for efficient resource management in fog computing. Utilisation metrics

54

enable the assessment of how effectively the middleware optimises resource alloca-

tion across fog nodes, providing quantitative evidence of the framework’s ability to

maximise resource efficiency. These metrics are essential for determining the per-

formance impact of different approaches on both application responsiveness and

fog node efficiency.

Furthermore, this combination of performance and efficiency metrics provides a

comprehensive evaluation framework that captures both user-centric outcomes (re-

sponse time) and system-centric benefits (resource utilisation, energy consump-

tion, network usage), enabling a holistic assessment of the middleware’s effective-

ness in achieving the research objectives.

3.6 Rationale for Evaluation Approach

Performance evaluation in computing is usually done by mathematical analysis,

simulation or experimentation [147]. Ideally, a combination of these approaches is

used. Analytical evaluation is done using mathematical equations. It is used to

test simple models and for the generalisation of models. As this research follows

an experimental approach through simulations, the discussion of mathematical

analysis is set aside at this point. The two approaches–simulation and experimen-

tation (test bed)–are examined, with a justification for choosing simulations for

the experiments in this study.

A simulation uses a model of the system being studied to show how the system

will behave given a set of inputs. For two reasons, simulation experiments are

less reliable than experimentation on an actual system or test-bed. First, most

simulators run in discrete time, whereas life is in continuous time. The simulation

results are, therefore, not a true reflection of how the system will behave in the

real world. Secondly, a highly controlled simulation environment cannot show

unpredictable events that may occur in a live environment. By contrast, a physical

experimentation tests the real-world implementation of a system or its prototype

and produces more reliable results.

55

On the other hand, experimentations are often not practicable in specific fields

compared to simulation. Building physical experiments takes much longer and

often depends on other considerations not controlled by the researcher, such as

equipment availability. Also, the cost involved is often higher than running simu-

lation software on a single computer system. Furthermore, it is almost impossible

to test for the scalability of a big system through experiments [148]. By contrast,

simulation can predict a system’s behaviour at scale. Thus, although not ideal,

simulations are preferred for evaluating network systems and protocols [147]. The

best approach is to use a combination of approaches [144]. Experiments show that

the system works as expected, and simulations show it can work at scale.

For this thesis, carrying out both simulations and physical experimentation is

impractical. First, as previously alluded to, there are no real implementations

of fog computing to carry out actual tests. Even if there were, the researcher

faced the classic challenge in computer network experimentation--running active

experiments on a live network system [148]. This would have been impractical

given the active nature of the techniques proposed in this work. Furthermore, the

time and budget constraints imposed by the research program mean that such an

approach would further delay the study.

Moreover, simulations have been the most common means of evaluation for fog

computing [143, 149]. Also, the simulation tools developed for fog computing are

based on well-established frameworks which have been used for cloud computing

and have been widely accepted by various research communities.

Table 3.1: Some Fog Simulators

Simulator Year Language(s) or tool(s) used
Name Paper
FogTorch [117] 2017 Java
iFogSim [150] 2017 Java, CloudSim, JSON
MyiFogSim [151] 2017 iFogSim
FogNetSim++ [152] 2018 OMNeT++
YAFS [153] 2019 Python, JSON
MobFogSim [154] 2020 iFogSim

56

3.6.1 Simulation Tools for Fog Computing

Most fog computing techniques have been evaluated using simulations [54, 119].

Few middleware for fog computing have been evaluated through experiments [35,

129], however, as these are made for specific use cases and scenarios, they do not

have the challenges discussed above. The work in [114] presented a fog middleware

which was evaluated using a mathematical model.

Several simulation tools are available for fog computing [155]. iFogsim [150] ex-

tends the CloudSim [156] simulator. It is one of the popular tools used for fog

simulation. iFogSim is written in Java, and the source code is freely available

on Github1. The simulators presented in [151, 154] are extensions of iFogSim.

FogNetSim++ [152] is based on OMNeT++ which is written in C++. FogNet-

Sim++ includes a fog broker node for managing other nodes in the fog system. In

2019, Lera et al. [153] developed Yet Another Fog Simulator of YAFS. Written in

Python, YAFS uses graphs to represent topologies and data flow. Both iFogSim

and YAFS allow users to import custom topologies and modules using JSON. Ta-

ble 3.1 summarises information on some fog simulators. iFogSim and a developed

simulation tool based on FogNetSim++ are used in this study. The developed

environment is described in the next section. The choice of a tool depends on the

system model for the study under consideration and how each tool supports the

model. Details of each simulation tool used are presented with the studies they

are used in subsequent chapters.

Rationale for Choosing OMNeT++

Unlike other simulation tools available for fog computing research, OMNeT++ of-

fers several distinctive features that make it particularly well-suited for middleware

evaluation in this study.

Modular Architecture and Component-Based Design: OMNeT++ em-

ploys a modular, component-based simulation architecture that aligns perfectly

1https://github.com/Cloudslab/iFogSim

57

with the middleware evaluation requirements of this research. This modular de-

sign enables the systematic analysis of specific middleware features and their indi-

vidual effects on system performance, allowing for granular evaluation of different

architectural components such as resource managers, load balancers, and com-

munication protocols. This capability is essential for understanding how each

middleware component contributes to overall system behaviour.

Comprehensive Network Protocol Support: The INET framework inte-

grated within OMNeT++ provides a complete implementation of the Internet

protocol stack, encompassing all network layers from physical to application. This

comprehensive network modelling capability is particularly valuable for this re-

search because it enables accurate simulation of the heterogeneous network envi-

ronments typical in fog computing, where multiple communication protocols and

network technologies coexist. The ability to model complete network architectures

is crucial for evaluating the proposed middleware across different deployment sce-

narios including peer-to-peer, clustered fog, and cloud-based architectures.

Scalability and Performance Analysis: OMNeT++ supports large-scale net-

work simulations with sophisticated statistical data collection and analysis capabil-

ities. The integration of Python and Pandas for data analysis, as mentioned in the

developed simulation environment, enables comprehensive performance evaluation

and result interpretation. This scalability is essential for evaluating middleware

performance across different network sizes and configurations.

Extensibility and Customisation: The C++ programming environment and

Network Description Language (NED) provide extensive customisation capabil-

ities, allowing for the implementation of specific middleware functionalities and

communication protocols not available in other fog computing simulators. This

flexibility was crucial for implementing the novel peer-to-peer and clustered archi-

tectures proposed in this research.

Established Research Foundation: Building upon FogNetSim++, which ex-

tends OMNeT++, provides a solid foundation that has been validated by the

58

research community while allowing for the specific enhancements required for mid-

dleware evaluation.

Hardware Requirements

Processing Power: Multi-core processors (minimum 8 cores recommended) are

essential for handling the parallel processing demands of large-scale network simu-

lations, particularly when evaluating peer-to-peer architectures with multiple con-

current nodes.

Memory Requirements: A minimum of 16GB RAM is recommended, with 32GB

preferred for large-scale simulations involving hundreds of fog nodes and thousands

of IoT devices. The memory requirements scale with the network size and the

complexity of the middleware operations being simulated.

Storage Capacity: Sufficient storage space (minimum 200GB) is required for sim-

ulation data, logs, and result files, particularly when conducting extensive para-

metric studies across multiple scenarios and configurations.

Operating System: The simulations were conducted on Linux-based systems (Ubuntu

20.04 LTS) to leverage the optimal performance and compatibility of OMNeT++

with Unix-based environments.

These hardware specifications ensure that the simulation experiments can be con-

ducted efficiently while maintaining the reliability and reproducibility of results

across different evaluation scenarios.

3.6.2 Simulation Environment

A simulation environment was developed in OMNeT++ to evaluate peer-to-peer,

clustered fog, and cloud-based architectures. The implementation builds upon

FogNetSim++, using the INET framework to support all layers of the network

model. The simulation components and modules are programmed in C++, while

59

network topologies and module designs are defined using the Network Descrip-

tion Language (NED). The simulation framework includes various features such

as random number generators, topology discovery, routing mechanisms, queuing

models, and statistical data collection. Additionally, the latest features in OM-

NeT++, such as data analysis using Python and Pandas, are integrated to enhance

performance evaluation and result interpretation. A detailed description of the

simulation tool and its components is provided here, with the full implementation

available on GitHub 2.

System Model

End-user devices generate and transmit requests to fog nodes for processing. These

users can be deployed as a collection of IoT devices in a sensor network connected

to a fog computing infrastructure, where requests are sent through a common gate-

way. Alternatively, users may consist of mobile devices that dynamically change lo-

cation within the network, transitioning between different fog environments. Both

stationary and mobile users are supported, with communication facilitated over

wired or wireless connections.

An MQTT-based application running on UDP is included in the simulation to

enable lightweight publish-subscribe messaging. Additionally, the INET frame-

work supports various other application-layer protocols, including HTTP, SMTP,

CoAP, AMQP, and FTP, allowing further extension of the tool to evaluate different

application scenarios and transport protocols in a fog computing environment.

Fog Nodes

Fog nodes serve as intermediate processing units that handle requests from end-

users. Figure 3.3 shows the NED components of the fog nodes. Three primary

classes of fog nodes are implemented:

2https://github.com/hsamwini/FogSimulator.git

60

Figure 3.3: The Fog Node Module

Peer-to-Peer Fog Nodes These nodes communicate directly with each other,

either processing requests locally or forwarding them to another fog node. In the

current implementation, peer assignments are static, with predefined connections

between nodes. Future enhancements will introduce dynamic peer selection, al-

lowing nodes to establish connections based on user-defined protocols and network

conditions.

Clustered Fog Nodes These nodes operate as worker nodes, executing tasks

assigned by a centralised broker or cluster controller. This architecture enables

efficient resource utilisation by distributing workloads across multiple fog nodes.

Controller/Broker The broker receives user requests and manages task distri-

bution among fog nodes based on predefined scheduling policies. In a centralised

or clustered fog deployment, the broker also incorporates resource management

and middleware components. Figure 3.4 illustrates an example of a clustered fog

network configuration.

61

(a) An single cluster
(b) A Clustered Architecture

Figure 3.4: GUI view of the simulation (clustering example)

Cloud Data Centres

In addition to fog nodes, a cloud computing environment is simulated as a data

centre consisting of multiple high-performance servers. These servers execute the

same applications as fog nodes but provide significantly greater computational

resources, measured in Millions of Instructions Per Second (MIPS). The simula-

tion supports multiple cloud infrastructures deployed across different locations,

allowing researchers to compare latency, resource utilisation, and service delivery

between fog and cloud computing paradigms.

3.7 Summary

This chapter introduced the research design used in this study, detailing the ap-

proach taken to investigate middleware for resource management in fog computing.

The research is structured into four key stages: feature analysis and selection,

middleware framework development, design and implementation of middleware

features, and evaluation. Each stage is designed to address specific objectives and

ensure a systematic progression toward the final middleware design.

62

The chapter also outlined the key evaluation metrics used to assess the proposed

middleware, including response time, resource utilisation, network usage, and en-

ergy consumption. These metrics were selected based on their relevance to the re-

liability and efficiency of fog computing environments. Additionally, the rationale

for choosing a simulation-based evaluation approach over physical experimentation

was discussed. It also emphasises the feasibility, scalability, and cost-effectiveness

of simulations for evaluation in the absence of real-world fog computing deploy-

ments.

Furthermore, an overview of available fog computing simulators was provided; it

highlights their capabilities and justifies the selection of iFogSim and Omnet++

for this study. The choice of these tools was driven by their ability to model fog

environments accurately and support custom implementations required for this

research.

The next chapter builds on the research design presented here by detailing the

middleware framework, including its architecture, core components, and the spe-

cific resource management techniques implemented. The iterative nature of the

middleware development process, as illustrated in the research design, ensures that

the final solution is refined based on performance evaluations. Through this struc-

tured approach, the study aims to contribute a middleware solution for improving

the reliability and efficiency of fog computing applications.

CHAPTER 4

Middleware for Fog Resource Management

This chapter proposes a middleware framework for fog computing based on a re-

view of the state-of-the-art resource management in fog computing. The review

forms the foundation for identifying the principles and features of the proposed

middleware. Consequently, this chapter connects the existing research on fog re-

source management with the middleware framework, addressing the key research

question: What role will middleware play in fog architecture? The proposed

middleware framework provides a framework for efficient resource allocation, task

scheduling, load balancing, and service orchestration in a heterogeneous fog com-

puting environment.

4.1 Review of Fog Resource Management

Resource Management in a distributed system, as defined by [157], consists of

three tasks:

1. Planning and organising the provision of resources, which includes:

• Resource location

• Resource availability

63

64

• Resource cost

2. Controlling the use of and access to resources, including allocation, optimi-

sation, and authorisation.

3. Task management, ensuring resource reliability and failure detection.

The goal of resource management in distributed systems is to maintain optimal

performance [158]. In their work on resource management in large distributed sys-

tems, Goscinski et al. [159] proposed a two-tier approach to resource management

in distributed systems. A lower layer is for local resource export and allocation,

and an upper layer is for non-local resources or services.

Consequently, a resource management system for fog computing should organise

and control resources and manage tasks to ensure reliable service performance. In

the fog environment, local resources refer to those on a fog node or a cluster of

fog nodes under common control. Non-local resources or services may originate

from other fog nodes, the cloud, IoT devices, or users. To develop a resource

management system for fog computing, it is essential to identify and define the

resources involved and the characteristics of the fog environment. Furthermore,

the trade-offs associated with various aspects of resource management must be

analysed to ascertain the optimal approach to middleware for fog computing.

Resource management at the fog layer is critical for two main reasons. Unlike the

cloud, the fog nodes are resource-constrained. Most devices at the fog layer often

serve a primary function beyond fog computing [62]. Also, fog nodes have smaller

form factors and processors compared to the cloud [113]. Next, fog nodes are

heterogeneous in various ways. They differ in architecture, resource availability,

speed, etc. Therefore, the fog layer’s processing, network and storage resources

must be managed to achieve the desired performance levels. The CPU, memory,

network, virtual machines, and energy resources at the fog layer must be man-

aged to ensure that processing can be done by fog nodes without impacting the

networking or other functions of fog nodes and without violating Service Level

Agreements (SLA) for applications. Furthermore, several fog nodes in a domain

65

may share resources at the fog layer for efficient execution of tasks [26, 98, 114]. In

such a scenario, the resources within the fog domain must be managed for efficient

utilisation. Based on these factors, resource management has been a focus of the

fog research community.

The authors in [113] present a review of resource management in fog and edge

computing. Their review groups papers on resource management in architectures,

infrastructure, and algorithms. Middleware is classed under resource management

infrastructure in this work. The authors note that resource discovery at the edge

is not easy, and most edge researchers in edge/fog resource management assume

resource discovery as a basis for their work.

Martinez’s survey [160] is based on four stages of fog implementation. The four

stages are design and dimensioning, selecting resource allocation methods, building

a framework for resource management, and evaluation. The resource management

aspect of this work focuses on resource provisioning and IoT resource allocation;

other aspects of resource management are not considered.

Kaur et al. [161] review load balancing approaches in fog computing. Load bal-

ancing techniques are classified into static or dynamic approaches.

Table 4.1: Resource Management in Fog Computing

Paper TO AP RS LB RA RD
Mouradian et al. [19] X × X X × ×
Yousefpour et al. [59] X X X X × X

Hong and Varghese [113] × X × X × X
GhobaeiArani et al. [18] X X X X X ×
Bendechache et al. [162] × × × X X X
Mijuskovic et al. [163] X X X X X X
Kaur and Aron [161] × × × X × ×
Martinez et al. [160] × × × × X ×

Fahimullah et al. [164] X X X X X ×
Kansal et al. [165] X X X X X X

Alsadie [166] X X X X X ×

TO: Task Offloading; AP: Application Placement; RS: Resource Scheduling; LB:
Load Balancing; RA: Resource Allocation; RD: Resource Discovery

66

In an early work on resource provisioning in fog computing, Agarwal et al. [115]

use a fog server manager to allocate resources on fog nodes to service requests

from clients. In their architecture, requests that a fog node cannot service are

forwarded to the cloud, and there is no collaboration between fog nodes. Kimovski

et al. [116] proposed an architectural approach modelled after the human brain to

achieve adaptive resource management at the fog layer.

Task offloading across different layers in the fog architecture has been investigated

by researchers as a resource management approach. Papers [117, 118] adopt greedy

heuristic approaches to offloading tasks. Mahmud et al. [119] tackle the problem

from a Quality of Experience perspective. They use fuzzy logic to prioritise appli-

cation placement requests. In [62], ENORM, a framework for dynamically man-

aging resources on edge nodes, is presented. Resource Management on ENORM,

however, involves the cloud and is therefore not ideal for delay-sensitive applica-

tions. Also, ENORM focuses on resource management on a single fog node; it

does not do so for multiple nodes cooperatively.

In paper [98], Zhang et al. adopt a hierarchical approach to resource management

in a cooperative fog computing system for intelligent transportation systems. Re-

sources are managed by a coordinator fog node, which collects relevant information

from other nodes within a domain. However, reliance on a coordinator server is a

single point of failure for the system.

Table 4.1 summarises the tasks of resource management that researchers have

focused on based on reviews of resource management in fog computing.

4.1.1 Resource Management Tasks

Based on the analysis above, resource management in fog computing could be

defined as the organisation and control of heterogeneous fog devices to deliver

cloud services to end users in a dynamic, scalable, and robust manner to meet

user requirements. Table 4.2 summarises the key resource management tasks in

fog computing based on this review.

67

Task Description Common Approaches
Task Offloading Offloading computations

from resource-constrained
fog nodes to nearby fog
nodes or the cloud.

Single-type: fog nodes of-
fload tasks to a single
fog node; multiple-type ap-
proach: tasks are sent to
multiple nodes as sub-tasks
for parallel processing [167]

Load Balancing Distributing tasks across
fog nodes to prevent bottle-
necks and optimise perfor-
mance.

Static, dynamic and adap-
tive approaches [165]

Resource Alloca-
tion and Provi-
sioning

Assigning tasks to fog nodes
while ensuring QoS compli-
ance.

Heuristic, approxima-
tion and Reinforcement-
Learning Algorithms [146]

Application
Placement

Deciding where services
should be deployed within
a fog network.

Centralised, decentralised
and hierarchical [146]

Resource and
Task Scheduling

Scheduling tasks on fog
nodes to optimise execution
order and efficiency.

Static, Dynamic, hybrid
and artificial intelligence
approaches to task schedul-
ing for fog computing [168,
169]

Resource Dis-
covery

Identifying available re-
sources dynamically in a
large-scale fog network.

Peer-to-peer, Wi-Fi,
MQTT, DNS-based discov-
ery [170]

Table 4.2: Summary of Resource Management Tasks in Fog Computing.

Task Offloading

Task Offloading refers to approaches to free up resources on resource-constrained

fog nodes by sending workloads to other fog nodes with more resources or to the

cloud to process them. It involves direct interaction between fog nodes. Two

approaches have been used for task offloading in fog computing [167]; single- and

multiple-type approaches. In the single-type approach, fog nodes offload tasks to

a single fog node, while in the multiple-type approach, tasks are sent to multiple

nodes as sub-tasks for parallel processing.

68

Load Balancing

Load balancing seeks to evenly distribute tasks among nodes to avoid over-utilisation

or under-utilisation [171]. Load balancing aims to reduce response time and in-

crease throughput [172]. Approaches have been classified into static, dynamic and

adaptive approaches [165].

Resource Allocation and Provisioning

Resource Allocation and Provisioning refers to provisioning resources for the users

request. It involves allocating user tasks to a set of fog nodes to achieve the

tasks’ QoS requirements. Two aspects of the problem are separated into resource

allocation and provision in some proposals such as [146]. The resource alloca-

tion problem involves allocating fog nodes to services, which is a double-matching

problem involving fog and cloud on the one hand and fog and users on the other.

Resource provisioning is the problem of making fog resources available for services.

It focusses on only individual fog nodes or groups of nodes. Heuristic, approxi-

mation and Reinforcement-Learning Algorithms have been proposed for resource

allocation in fog computing. In this review the two aspects are considered as one

as the distinction is not relevant for the goal of determining middleware features.

Application Placement

Application Placement refers to the placement of applications or services on fog

nodes. Some researchers have also referred to it as orchestration [173]. It involves

interaction between the cloud and fog devices. Application placement techniques

have been categorised into centralised, decentralised and hierarchical [146].

69

Resource and Task Scheduling

Resource and task scheduling has been used to refer to a range of tasks in fog

computing. It refers to scheduling tasks on a fog node to meet users’ QoS re-

quirements. In some contexts, resource scheduling also refers to the scheduling of

resources for user requests to achieve optimal utilisation of fog nodes [164]. There

have been static, dynamic, hybrid and artificial intelligence approaches to task

scheduling for fog computing [168, 169].

Resource Discovery

Resource Discovery involves finding available resources in the fog environment.

These include cloud services/applications, IoT devices/users, and fog nodes. Un-

like resource discovery in web services and IoT, which adopt approaches such as

broadcast and multicast, in fog computing, such approaches cannot be adopted

because of the large-scale nature of the resources involved [174]. Proposals on

resource discovery in fog computing focus on the communication aspects. Ap-

proaches have involved exploring Wi-Fi, MQTT, DNS, BGP and Peer-to-peer

protocols [170]. Resource discovery

Fog computing extends cloud capabilities to the network edge, providing low-

latency processing for IoT applications. However, fog nodes differ from cloud data

centres in two key ways:

• Resource Constraints: Most fog nodes are embedded in devices with a pri-

mary function other than computation (e.g., routers, gateways, vehicles)

[62].

• Heterogeneity: Fog nodes vary in CPU capacity, storage, and network band-

width, making uniform management complex [113].

A fog resource management system must account for these differences while or-

ganising, controlling, and coordinating resources. Specifically, it must:

70

• Manage local resources on individual fog nodes or within a fog cluster.

• Integrate non-local resources, including cloud services, IoT devices, and

neighbouring fog nodes.

• Optimise resource usage while ensuring low latency, energy efficiency, and

SLA compliance.

4.2 Middleware Framework Requirements

In the fog architecture, middleware will offer services to devices across all layers

the cloud, fog and users. Middleware for the discussed resource management en-

vironment described above requires dynamic membership, asynchronous commu-

nication, a common message ontology, and supporting heterogeneity and mobility.

To support these resource management tasks, fog middleware must be designed

with the following key principles:

4.2.1 Transparency

Transparency refers to the ability of a system to hide details of its internal workings

from users and present a consistent experience to users regardless of changes or

modifications within the system. Transparency is important in the IoT-cloud

context because of the limited computational resources available to IoT devices.

Transparency ensures that IoT devices maintain a limited view of the system

and do not require storage and processing resources to keep track of services.

Middleware should abstract underlying complexity from applications and users.

Transparency can be categorised into:

• Location Transparency Users should not need to know where processing

occurs.

• Access Transparency Different fog nodes and cloud services should be ac-

cessible uniformly.

71

• Failure Transparency The system should recover from failures without af-

fecting application performance.

4.2.2 Adaptability

The dynamic nature of fog environments requires middleware that can adapt to

changes in resource availability, workload, and network conditions. The fog envi-

ronment is dynamic, with unreliable and heterogeneous devices. As a result, the

architecture of the fog layer, the availability of fog nodes and the behaviour of

devices would change over time. Unlike a cloud data centre, which is often under

a single entity’s control, ensuring predictable behaviour, the fog layer comprises

several devices from different sources. Given the collective states of available fog

nodes, a given architecture may be preferred over others for a given context. For

example, a decentralised clustered architecture may be preferred over a peer-to-

peer architecture in a vehicular fog environment where mobile vehicles provide

onboard computing and storage resources as fog nodes. Middleware should be

able to manage changes in the fog environment and adapt the management of

resources to suit the changes.

The fog environment is dynamic; nodes can appear, disappear, or change roles.

Middleware must adapt by:

• Configuring itself to include modules and components that are suitable for

the fog environment.

• Reconfiguring resource allocation based on current availability.

• Supporting mobility-aware resource management, especially in vehicular fog

environments.

72

4.2.3 Interoperability

Fog nodes belong to different administrative domains, running diverse platforms.

Middleware must ensure seamless cross-platform communication using standard

protocols (MQTT, CoAP, etc.). Middleware should enable communication and re-

source sharing among heterogeneous devices, platforms, and protocols. In a cloud

data centre, all devices are controlled by a single entity; therefore, communications

among components may be planned and controlled. In contrast, devices at the

fog layer may belong to different entities with different platforms and systems.

To ensure effective collaboration for resource sharing, fog nodes must exchange

messages and process requests from each other. Interoperability is the ability of

systems running different platforms to work together.

Middleware at the fog layer should make communication and resource sharing

among fog nodes from different entities possible.

4.2.4 Context-awareness

Middleware will allow fog nodes to determine the nature of the context in which

they have been deployed. The context in which a fog node operates comprises

the load from the end-users, neighbouring fog nodes, and the requirements of the

cloud(s) available to the fog node. Middleware will manage communication with

the different layers, horizontal context from interaction with other fog nodes, and

vertical context with end-users and the cloud.

Based on a given context the fog device can adapt its features to ensure it fits into

the given context and services IoT requests well.

Middleware should sense environmental changes and adjust resource allocation

accordingly. This includes:

• User demand fluctuations (e.g., traffic surges).

• Network conditions (e.g., latency, bandwidth constraints).

73

• Fog node status (e.g., CPU load, energy levels).

4.3 Middleware Features

This work categorises middleware features along three classification dimensions

based on the approaches used to develop the middleware framework for fog resource

management: resources, architectural approaches, and management.

Resources

The middleware must effectively manage and coordinate different types of re-

sources within a fog computing environment. These resources can be grouped into

three main categories as presented in table 4.3.

Resource Category Key Contributions

Fog Nodes
- Compute resources
- Storage capacity
- Network connectivity

Cloud Resources

- Services
- Compute power
- Storage
- Network infrastructure

End-users / IoT Devices
- Interact with the system
- Consume services

Table 4.3: Categories of Resources and Their Contributions

Architectural Approaches

Middleware solutions can adopt different architectural models for resource man-

agement, including centralised, decentralised, and hybrid approaches:

• Centralised approach: A single resource manager maintains a resource

database and allocates resources based on predefined policies, rules, and user

74

requirements. While this ensures global visibility and policy enforcement, it

introduces a traffic bottleneck and a single point of failure.

• Decentralised approach: Resource management responsibilities are dis-

tributed among multiple nodes or across all participating nodes. This avoids

central bottlenecks, enhances scalability, and increases fault tolerance.

• Hybrid approach: A combination of centralised and decentralised models,

often structured in hierarchical layers, balances global oversight with local

autonomy, improving efficiency and resilience.

Management

The management dimension focuses on the actual mechanisms used for resource

management within the middleware. These mechanisms include:

• Algorithms for task scheduling, load balancing, and resource allocation.

• Protocols that define communication and coordination strategies among fog

nodes.

• Infrastructure components that provide the underlying execution environ-

ment for fog applications.

By integrating these dimensions—resource categorisation, architectural models,

and management mechanisms—the proposed middleware framework ensures effi-

cient, scalable, and adaptive resource management in fog computing environments.

Dynamic Adaptability

The middleware framework integrates dynamic adaptability into its design:

1. Lightweight Mode: Minimal resource consumption, used when fog nodes

only process requests. Here, the fog node is a worker node for a central

75

controller(cluster controller or broker) which assigns tasks to it. Middleware

manages the communication with the controller.

2. Cluster Controller Mode: Activated when a node manages a fog clus-

ter. The cluster controller manages a group of fog nodes to which it sends

processing tasks based on resource management policies and application re-

quirements.

3. Peer-to-Peer Mode: Enabled for distributed task sharing. Figure 4.1

shows the structure of fog nodes with the middleware in the peer-to-peer/decentralised

scenario.

These modes ensure that middleware overhead remains minimal to maximise re-

source efficiency.

Figure 4.1: Decentralised (Peer-to-Peer) Fog Model with Middleware

4.4 Middleware Architecture

Based on an analysis of the requirements and features discussed above, a three-

layered architecture is proposed for the fog middleware framework. Each layer is

76

adaptive and includes features which may be active or disabled depending on the

context in which the middleware is deployed. The adaptive design also frees up

resources on fog nodes for other tasks based on availability and the architectural

environment. A layered approach to adaptive frameworks has been used in other

middleware in literature [141, 175, 176].

The middleware adopts a three-layered adaptive architecture:

1. Communication Layer: Manages all interactions with fog nodes, IoT devices,

and the cloud.

2. Management Layer: This layer provides core resource management capabil-

ities, including task offloading, scheduling, and load balancing.

3. Services Layer: Tracks and records service locations on the node and other

associated fog nodes. Checks resource availability on the node to host ser-

vices.

This adaptive design allows middleware functionalities to be activated or disabled

based on the deployment context to ensure scalability and efficient resource utili-

sation. Figure 4.2 shows the middleware’s architecture with all components.

4.4.1 Communication Layer

Manages interactions between different system components:

• Cloud Interface Exchanges orchestration messages with the cloud.

• End-User Interface Receives IoT requests and sends responses.

• Fog Interface Enables peer-to-peer or hierarchical communication between

fog nodes.

• Inter-cluster Interface Facilitates cross-cluster communication in clus-

tered architectures.

77

Figure 4.2: Proposed Fog Middleware

The first layer of the architecture is the communication layer which has compo-

nents for managing interaction with other nodes in the system. It comprises a cloud

interface to communicate with the cloud, an end-user interface, a fog interface for

communication with other fog nodes, and a cluster interface for communication

with other clusters. The cluster interface is used in a clustered fog architecture

and would be inactive in a different architecture. The fog communication interface

is used to exchange messages with other fog nodes in a peer-to-peer architecture

and to exchange messages with a fog controller in a clustered architecture. Com-

munication modules send and receive messages using MQTT and/or CoAP.

The lightest version of the middleware has only the user and cloud interfaces for

scenarios where fog devices only forward requests from users to the cloud, which

is case 4 in the open fog architecture (Figure 2.5) [63].

78

Cloud Interface

One feature of fog computing distinguishing it from edge-ward computing paradigms

such as Edge Computing is that Fog computing does not replace the cloud but

rather complements the cloud. Fog nodes only extend the capabilities of the cloud

to the edge of the network and, therefore, depend on the cloud. Consequently,

fog nodes maintain constant communication with the cloud. The cloud interface

is, therefore, meant to send and receive messages from the cloud. Messages are

exchanged between the cloud and the fog devices to orchestrate services, verify

users, and send application data for further processing. The interaction with the

cloud depends on the role the fog node is playing.

Inter-cluster Interface

In a cluster-based architecture, middleware running on fog controllers/brokers ex-

change messages with controllers from other clusters. The inter-cluster communi-

cation interface sends and receives the messages. Controllers update other clusters

on their resource availability and forward requests to other clusters for processing.

Each fog controller maintains a record of its neighbours. In other architectures

or scenarios, such as peer-to-peer or hierarchical fog structure, the inter-cluster

interface is disabled.

End-User Interface

The user interface sends and receives messages from the end user. IoT sensors

and other end-user devices send requests for processing and receive responses.

Application data may be stream data, simple requests, telemetry data etc. The

user interface would be part of the middleware for most architectures or scenarios.

Users exchange messages with middleware with protocols such as Message Query

Telemetry (MQTT) and CoAP.

79

Fog Interface

In the peer-to-peer and hierarchical architectures, fog nodes exchange messages

directly with one another. The fog node interface thus manages the message

exchange between devices in these architectures. Fog nodes send updates on their

resource availability. In a decentralised clustered architecture, the interface is used

by cluster members to exchange messages with their cluster controller or broker.

4.4.2 Management Layer

The second layer manages the resources under the middlewares control. This layer

includes the scheduler, which contains task queues, a task scheduler, and task

placement modules, as well as a request handling module for processing requests

from IoT devices. Additionally, it features a service orchestration module for

managing services on the host node and other nodes (fog controller), and a mobility

management module. Each module within this layer, or the entire layer, may be

active or disabled in a specific context. When the fog node functions as an ordinary

node in a cluster, the entire layer would be inactive. Conversely, as a fog controller

in a clustered architecture, most modules would be necessary.

Request Handler

This module receives end-user requests, decides where they should be processed

and forwards the request. Algorithm 1 shows the request handling algorithm.

Requests from IoT devices are first received at the request handler. The request

handler looks up the service requested by the IoT device in the service registry. If

the service is hosted on a fog node within the cluster and the node has the resources

to run it, the request assigned to the node. Otherwise the service will be looked

up on the registry of other clusters and sent to an appropriate cluster. Where

the service cannot be located, the request is forwarded to the cloud. Algorithm

80

1 and the cluster controller mechanisms of the middleware are fully evaluated in

chapters 5 and 6.

Algorithm 1 Request Assignment Algorithm

Require: IoT Request
Ensure: Assign request to a suitable fog node

1: TaskMips← Request.RequiredMips
2: TaskCost← Request.RequiredCost
3: while Request NOT assigned do
4: if nodes available in cluster then
5: for each available node do
6: if node.AvailableMips > TaskMips then
7: if node.Cost < TaskCost then
8: assign Request to node
9: send Request to node

10: break
11: end if
12: end if
13: end for
14: else if NO nodes available in cluster then
15: for each known cluster do
16: if cluster.AvailableMips > TaskMips then
17: if cluster.MinimumCost < TaskCost then
18: Assign Request to cluster
19: send Request to cluster
20: break
21: end if
22: end if
23: end for
24: else
25: send Request to the cloud
26: break
27: end if
28: end while

Scheduler

Handles task execution priorities and optimises resource utilisation. The task

scheduler prioritises tasks that are processed on the fog node. Tasks are priori-

tised based on QoS requirements and/or Service Level Agreements. The scheduler

keeps track of resources available on the node and allocates tasks to them. Also,

81

the module implements various scheduling schemes which are activated based on

context.

Service Discovery

Manages service instances dynamically. It searches for new services when they are

requested by IoT devices. New services are discovered through other fog nodes, a

fog controller, or the cloud. When a fog node receives high volumes of requests

for a service it does not host, it may request to host that service.

Adaptive Controller

Adaptive controller configures the middleware based on the available fog node’s

environments. The module follows the MAPE-K [177] pattern for self-adaptation

as illustrated in figure 4.3. Algorithm 2 is executed during the initial setup phase,

where the controller identifies and selects the most suitable fog environment by

evaluating connection delays and network structures. Depending on whether the

environment operates in a peer-to-peer (P2P) or clustered manner, the middle-

ware adapts by activating only the necessary components. For instance, in a P2P

environment, neighbour connections are established, while in a clustered environ-

ment, a controller node is contacted for integration. If no suitable fog environment

is found, the system defaults to cloud connectivity. This adaptive configuration

enhances resource efficiency and optimises fog computing performance. The P2P

model is fully evaluated in 7.

Resource Discovery Module

Implements lightweight protocols (MQTT, CoAP) for locating and registering

available resources.

If the request cannot be processed on the fog node, it searches for another fog node

to send the request to. First, the handler will look up the service in the Service

82

Figure 4.3: Middleware self-adaptive system (based on [177, 178])

Registry, if the service is hosted on a known node (a node listed on the registry),

the request is forwarded to that node.

Communication Interfaces

Four communication interfaces handle communication between the middleware

and other devices.

• The user/IoT device interface has components and protocols for exchanging

messages with user devices. Users send requests in messages to the middle-

ware, and the request handler processes them.

• The cloud interface sends and receives messages from the cloud for service

orchestration and forwarding data/requests for processing.

• The Fog Interface communicates with other fog nodes. In the case of a

clustered architecture, the fog interface forwards user requests to appropriate

83

Algorithm 2 Initial Configuration Algorithm

1: Input: x ∈ R+ (response wait time)
2: Output: Optimal fog node selection
3:

4: Send multicast message to all reachable fog nodes
5: Wait x time for responses
6: FogNeighbours← [] {List of fog node details}
7: for each response r ∈ Responses do
8: delay ← r.connectionDelay ∈ R+

9: envType← r.environmentType ∈ {P2P,Cluster,Null}
10: if envType = P2P then
11: neighbours← r.getNeighbours() ∈ List
12: neighbourDelays← r.getNeighbourDelays() ∈ R+

13: else if envType = Cluster then
14: controller ← r.getController() ∈ Node
15: end if
16: Append (r, delay, envType, neighbours, controller) to FogNeighbours
17: end for
18:

19: bestNode← selectBest(FogNeighbours)
20: if bestNode.envType = P2P then
21: Send connection request to 2 neighbour peers to join as neighbour
22: else if bestNode.envType = Cluster then
23: Request controller to join cluster
24: else
25: Request connection to the cloud
26: end if

fog nodes for processing and receives update messages from the fog nodes.

In a peer-to-peer architecture, the interface exchanges messages with peers.

• The cluster interface exchanges messages with middleware hosted on other

cluster controllers. The cluster interface is not present in the peer-to-peer

case. The interface is for receiving neighbour cluster updates and forwarding

requests to neighbour clusters when there are no available resources in the

middlewares cluster.

4.4.3 Services Layer

The services layer stores records of services, nodes, clouds and clusters within the

system. The management and communication layers use this layer to update and

84

Algorithm 3 Service Search Algorithm

Require: IoT Request
Ensure: Match Request to Service

1: Retrieve requested service
2: if service is hosted on the fog node then
3: if node can meet the request then
4: Assign task to this node
5: end if
6: else if Service NOT hosted on fog node then
7: Lookup Service in Service Registry
8: if service is in Service Registry AND Host Node is free then
9: Send request to Host Node

10: else
11: Send Service Lookup Request to Domain Controller
12: end if
13: end if

retrieve records of other nodes’ and services’ status within the system. The layer

comprises of a service registry for storing a record of available services and where

they are located, a fog node registry for storing a record of available fog nodes and

a cluster registry for records of neighbouring clusters in a clustered architecture.

Maintains records of available services, fog nodes, and clusters:

• Service Registry: Stores available services and their locations. The mid-

dleware maintains records of services and fog nodes which are hosting them.

The records are updated regularly as services are removed and added by fog

nodes according to demand and availability.

The performance of the Service Search(Algorithm 3) depends on the imple-

mentation of the service lookup in the registry, and can range from O(1) to

O(S). If the registry uses an efficient data structure like a hash table, the

lookup is O(1), making the entire algorithm O(1). If the registry is a list,

the lookup could be O(S), leading to O(S) worst-case complexity. Thus, the

overall time complexity depends on the service lookup method:

– Best case (hash-based lookup): O(1)

– Worst case (linear search in registry): O(S)

85

• Fog Node Registry Tracks resource availability across fog nodes.

• Cluster Registry Manages inter-cluster collaboration.

4.5 Summary

This chapter has presented a comprehensive overview of resource management in

fog computing and proposed a middleware framework to address the challenges

of managing resources in the fog environment. Through a detailed review of the

state-of-the-art in fog computing, several key principles and features of resource

management were identified, such as task offloading, application placement, re-

source scheduling, load balancing, resource allocation, and resource discovery.

The chapter emphasised the critical need for middleware in fog environments,

which must handle heterogeneous, resource-constrained fog nodes, as well as non-

local resources from the cloud and IoT devices. It highlights the importance of

managing resources effectively to ensure expected performance, especially given

the varying constraints and heterogeneous nature of the fog environment.

In conclusion, the proposed middleware framework aims to bridge the gap between

current resource management solutions and the specific needs of fog computing to

ensure efficient resource usage, improved service delivery, and support for diverse

applications in the fog environment.

CHAPTER 5

Transparent Task Processing with

Middleware in Fog Computing

This chapter evaluates the middleware approach to transparent request processing

in fog computing environments. The proposed middleware provides location trans-

parency by dynamically tracking available fog nodes and directing service requests

accordingly. It also enhances failure transparency by reallocating services in the

event of node failure or unavailability, ensuring uninterrupted service availability.

Abstraction is one of the key features contributing to cloud computings success[179].

The ability to pool resources together within and across data centres makes it pos-

sible for the user to experience their expected quality of experience without any

knowledge of disruptions or failures to nodes in the system. This kind of trans-

parency is possible in the cloud because data centres are often owned and managed

by the same cloud service provider. However, in a fog computing environment,

individual fog nodes may belong to a third party, such as a local ISP or mobile

carrier. They could be leased out to run a service on behalf of the cloud to im-

prove the Quality of Service for users. Two challenges arise from this. Firstly,

the limited availability of resources on fog nodes means there must be alternative

arrangements in the event of failure. The alternative cannot be at the cloud layer

since this would defeat the purpose of processing close to the user. Secondly, since

the location of services may change at any time, users must locate the service they

86

87

require when they need it without resorting to the cloud—especially for emergency

or delay-sensitive applications.

Although middleware has been used in distributed systems to provide abstraction

and transparency, its use in fog computing has not been fully investigated. The

findings here contribute to the broader field of edge computing by providing a

framework for improving service availability and resource utilisation in dynamic

environments.

The middleware framework receives user requests at the fog layer, processes them

based on predefined criteria, such as Quality of Service (QoS) requirements and

service availability, and directs them to the optimal fog node. The chapter details

the middlewares service discovery and request handling mechanisms, evaluates its

performance using simulation experiments with remote EEG monitoring as a case

study, and compares it with traditional fog and cloud computing paradigms. The

chapter is organised as follows: the next section provides a brief description of

the problem, then the proposed solution is presented, the third section details the

remote EEG monitoring case study, section four presents and discusses the results

and the final chapter is the conclusion.

5.1 Problem Description

Modern IoT applications require timely and efficient access to services hosted

across heterogeneous fog environments. However, these services may not always

be available within the local fog domain to which an IoT device is connected. When

this happens, current solutions either rely heavily on cloud access—resulting in in-

creased latency and network load—or lack the interoperability needed for efficient

fog-to-fog service access. The core issue addressed in this study is how to enable

low-latency, cross-domain fog service access for resource-constrained IoT devices

without depending on the cloud, while ensuring interoperability and scalability

across diverse fog domains.

88

Figure 5.1: Problem Scenario

This research models a solution based on a three-layer fog architecture, as discussed

in Section 2.4.3, and illustrated in Figure 5.1.

The bottom layer, or End Devices Layer, contains IoT, smart, and user devices

that generate data and request services. These devices are typically resource-

constrained and have diverse Quality of Service (QoS) needs. The volume, fre-

quency, and persistence of data produced at this layer vary widely, influencing the

nature and timeliness of the required service processing.

In the scenario shown in Figure 5.1, device A3 attempts to access Service C, which

is unavailable in its local fog domain (Domain A) but is present in a neighbouring

domain (Domain B). The challenge lies in enabling device A3 to access the service

on a fog node in Domain B without routing through the cloud.

To address this, the proposed approach uses middleware distributed across fog

nodes to support service discovery, request forwarding, and resource negotiation

across domains. The process is as follows:

89

1. Device A3 sends a service request to the closest fog node, f1, in the form:

Ri(idi, sc,mi, lo, pi) (5.1)

where idi is the user ID, sc is the requested service, mi indicates mobility

status, lo is the expected response time, and pi is the priority based on SLA.

2. f1 searches its local domain for sc but does not find it.

3. f1 contacts the domain controller, fa, which identifies the location of sc on

fog node f5 in Domain B.

4. f1 forwards the request to f5 and handles the conversion of the IoT message

to a service request.

If latency or performance issues arise, f1 may request fa to migrate or replicate

the service locally, depending on resource availability and cloud orchestration.

Middleware plays a critical role throughoutenabling fog-to-fog communication,

converting messages, and managing service registries dynamically.

The proposed solution is explored and evaluated through middleware-enabled

modules in Chapter 4 using a remote EEG application as a case study.

5.2 Proposed Solution

Fog nodes may be any device between the cloud and the end user. Computa-

tional resources at different levels of the network (gateway, access, core) are made

available for pre-processing or semi-processing of IoT data. Various entities own

and manage fog nodes. Also, fog nodes may be organised into domains or run as

stand-alone systems. Additionally, the computational resources made available by

nodes vary and may be increased or reduced depending on availability and work-

load. Consequently, a fog node may not always have the resources to process IoT

data sent to it.

90

Figure 5.2: Architecture of the proposed model with middleware

Middleware is hosted on fog nodes and interacts with IoT devices, the cloud and

other fog devices. Fog nodes may be any device with computational resources

at any level of the network from consumer devices to dedicated servers. Con-

sequently, their resources are not comparable to the significant computational

resources available in the cloud.

Since fog nodes are managed and owned by different entities, they may run different

operating systems or platforms and may not be interoperable. The role of the

middleware is to make it possible for heterogeneous fog nodes to interact with

each other for resource sharing to improve the system’s reliability.

Services are applications or parts of applications which are used by IoT devices.

Services perform single functions and may be chained to form a complete applica-

tion.

91

Users/IoT devices request services from the cloud or fog devices. They access

services by sending their user ID, service details and payload to the nearest fog

node. IoT devices are resource-constrained.

The cloud is resource-rich and provides services for end users and IoT devices. All

services are available in the cloud; however, some services are fully or partially

shared with fog devices to improve their performance.

As presented in chapter 4, middleware is designed for communication among fog

devices at the same level, lower or upper levels. The interaction between fog nodes

is mainly for information exchange, request forwarding and load balancing. Fog

nodes share data on the services they currently host and their resource availabil-

ity. They also forward IoT requests to other fog nodes for processing and offload

tasks to other fog nodes when overloaded. Moreover, middleware is designed to

also communicate with the cloud. Communication with the cloud is for orches-

tration, exchanging end-user information, sending data for further processing, etc.

Fog nodes perform various tasks for the cloud. This is an important distinction

between fog computing and other edge-based paradigms, such as edge computing.

In fog computing, fog nodes do not work independently of the cloud. The role

of the middleware is to interact with the cloud to define and set up the expected

role of the node. The middleware features involved in the work described here

include the request handler, task scheduler, service registry, service discovery and

communication modules. These modules presented in section 4.4.2 are evaluated

in the next section using remote EEG application as a case study.

5.3 Case Study: Remote EEG Monitoring

To evaluate the proposed approach, this section presents a remote electroen-

cephalography (EEG) application and compares its performance in three scenarios.

The first scenario is direct processing on a single fog node closest to the user, the

second scenario is using the middleware to improve application availability and

92

Figure 5.3: Architecture used in the simulation

the third scenario is processing in the cloud. Experiments run using iFogSim sim-

ulator [150], a popular Java-based simulation tool for fog computing as discussed

in chapter 3. An electroencephalography (EEG) application that receives EEG

signals from a user, processes the signals (on fog nodes or in the cloud), and sends

feedback to the user is modelled for this evaluation. Fig. 5.3 shows the simulation

setup.

Wireless Body Area networks make long-term physiological monitoring possible

outside of the hospital [180]. Wireless Electroencephalography(WESN) provides

the possibility for early detection, monitoring and treatment of diseases such as

epilepsy, Parkinsons and Alzheimers. The WESN is made of an array of EEG

sensing nodes each of which consists of an electrode array, signal processing unit

and a transceiver for communication. Amplitude-integrated EEG may be use-

ful in monitoring infants to predict the possibility of future or subsequent brain

damage[181]. The EEG application is modelled with three modules: a client

module, pre-processing and diagnosis, as shown in figure 5.4. The EEG sensor

generates signals up to 200Hz, within the range of EEG signal monitoring. As

EEG data is often noisy and often affected by artefacts on the patient or the en-

vironment, pre-processing is necessary to remove the noise from the signal [182].

93

Signals are cleaned and filtered by the client and pre-processing modules before

being analysed by the diagnosis module.

Table 5.1: Values of simulation parameters

Parameters Cloud Proxy Fog EEG
Node Node Sensor

Level 0 1 3 4
Rate per MIPS 0.01 0.0 0.0 0.0
RAM (MB) 40,000 4,000 4,000 1,000
Idle Power 16× 83.25 83.43 83.43 82.44
Downlink Bandwidth (MB) 10,000 10,000 10,000 -
Uplink Bandwidth (MB) 100 10,000 1000 1000
CPU Length (MIPS) 44,800 5,600 2,800 500
Busy Power (Watt) 16× 103 107.339 107.339 87.53

Simulations were run with three scenarios to evaluate the application’s perfor-

mance with the middleware’s service discovery and location transparency. In the

first scenario, modules are hosted on a single fog node (with no collaboration with

other fog nodes). In the second scenario, the user request is forwarded to another

fog device when the first node does not host the service. The third scenario runs

the application completely in the cloud. Data is sent from one node to another

after processing, and the feedback or actuation signal is sent back to the user.

The Sensor and Display may be an EEG device and mobile phone attached to

the patient or user, respectively. Fig. 5.4 shows the application design. Table 5.1

details the simulation parameters used.

Figure 5.4: Application Model for the simulation

94

5.4 Results and Discussion

The results of the experiments are discussed in this section. Three metrics were

used for the evaluation: the response time, network usage and energy consumption.

The following subsections discuss the results of each of them and how they compare

with other related results in the literature.

5.4.1 Response Time

Figure 5.5 illustrates the delay for the EEG application as the number of users per

fog node increases for the three scenarios. Data must travel across multiple nodes,

and with increasing network latency towards the cloud, the cloud-based scenario

has the highest latency. Also, processing on the fog node closest to the user has

a lower latency than processing on another fog in the same cluster. However,

when the number of users increased to 5, processing on another fog node in the

same cluster/domain produced a lower latency since the requests were processed

on devices with more processing resources than the fog device that first received

the request. In this case, the latency improvement is primarily due to the reduced

queuing and scheduling delays, which outweigh the propagation delay incurred

during task offloading. As the number of concurrent users increases, the processing

delay on the neighbouring fog node surpasses the network delay associated with

forwarding requests to a more capable fog node within the same cluster, making

distributed load balancing more effective. These results also highlight the need to

limit the load on fog nodes through load balancing. As shown in the figure, when

4 nodes are connected to the fog node the delay is higher than the delay from

processing in the cloud by two users.

5.4.2 Network Usage

The network usage for the application in the three scenarios is shown in figure 5.6.

Network usage increases significantly when processing is done in the cloud. As a

95

Figure 5.5: Comparison of application response time for the three scenarios

Figure 5.6: Comparison of network usage for the three scenarios

result of traversing multiple nodes and links and the increased latency link to the

cloud, network usage in the cloud scenario is much greater compared to processing

on fog nodes. This also shows the scalability of processing at the fog layer [150].

Moreover, processing on a fog node within the same cluster is done on the node

closest to the user. Consequently, As the volume of EEG requests grows, increasing

the density of fog nodes and implementing efficient load distribution mechanisms

among these nodes can enhance system reliability, mitigating the need to send

requests to the cloud.

96

5.4.3 Energy Consumed

Figure 5.7 presents the energy consumption of various devices in the simulation,

including the cloud data centre, for a scenario with five users. The energy usage

for fog devices is the same when requests are run at the fog layer but reduce to

the same level as the proxy(neighbouring fog node) when requests are run in the

cloud. When processing is done in the cloud, the energy usage of fog nodes is the

same as that of the proxy since they all fog nodes as network devices and only

forward traffic to nodes above or below them. Energy consumed by user devices

remains the same for all scenarios because they process the client module of the

application in all scenarios.

Comparing the results with [183, 184] reveals that while the middleware does

introduce some energy overhead due to its service discovery and request rout-

ing mechanisms, this overhead is negligible compared to the baseline fog node

consumption. More importantly, the energy efficiency gains achieved through in-

telligent resource allocationwhere the middleware enables local processing instead

of unnecessary cloud offloadingsubstantially outweigh any additional consumption

from the middleware components themselves. This demonstrates that the middle-

ware not only has minimal negative impact on energy usage but actually improves

overall system energy efficiency by ensuring requests are processed at the most

appropriate layer.

The cloud data centre exhibits significantly higher energy consumption due to the

extensive computational resources it maintains, as well as its substantial baseline

energy usage, even in idle states. This consumption increases further when appli-

cation processing is offloaded to the cloud, reflecting the additional computational

workload imposed on the data centre infrastructure without fog processing.

Results for adopting a middleware approach to transparency in fog computing

has been presented in this section. The evaluation uses simulations of an EEG

application in iFogSim simulator. In [185], a remote pain monitoring application

using fog computing was proposed and evaluated. The application sends surface

97

Figure 5.7: Comparison of energy consumption for devices in each scenario

electromyogram (sEMG) and electrocardiogram (ECG) signals and uses fog nodes

for preliminary processing.

The authors in [186] propose a framework that provides platform transparency

between application components and middleware. They used fog computing as a

use case for the proposed framework and demonstrated that placing computational

tasks at the right locations reduced CPU and network load. Their evaluation,

however, focuses on CPU and network utilisation and does not consider response

time or energy consumption.

5.5 Conclusion

This chapter has explored the use of middleware to enable efficient resource sharing

in fog computing environments. The proposed middleware framework addresses

two challenges in fog computing: location transparency and failure transparency.

By dynamically tracking service availability across fog nodes and optimising re-

quest forwarding, the middleware ensures that users can access services regardless

of underlying system changes.

98

Simulation results highlight the advantages of the middleware-enabled approach

over traditional fog computing and cloud-based processing. The middleware re-

duces response times, optimises network usage, and enhances system reliability. By

implementing load-balancing mechanisms and a middleware-based coordination

strategy, the proposed solution ensures efficient resource utilisation. It improves

service delivery, particularly for latency-sensitive applications such as EEG-based

health monitoring.

CHAPTER 6

Middleware-enabled Cluster

Interoperability

At the fog layer, nodes may be mobile, transitory or volunteer nodes made available

for a brief unpredictable period [22]. Also, both fog nodes and IoT devices are

heterogeneous in various ways–including size, availability and available resources.

As shown in the previous chapter, offloading tasks to nearby fog nodes improves

the reliability of applications at the fog layer and reduces the reliance on the cloud.

This chapter extends those findings by introducing a clustered architecture at the

fog layer. Clusters are modelled based on the concept of Autonomous Systems in

the internet—a group of devices that are managed by a common entity.

Research on clustering in fog computing has focused on cluster formation and

optimisation, but not on resource management and interoperability. This chapter

covers these less-evaluated research topics and presents: i) an approach to resource

sharing within and across clusters at the fog layer, controlled by middleware and

ii) addresses interoperability in fog computing by presenting the notion of inter-

and intra-cluster load balancing—an important contribution to increasing service

availability in fog computing.

As the deployment of fog computing architectures expands, the need for efficient

resource management and interoperability among heterogeneous devices becomes

99

100

increasingly crucial. At the fog layer, nodes exhibit diverse characteristics in terms

of mobility, resource availability, and computational capacity. Unlike traditional

cloud-based computing, fog computing operates at different layers of the network

(access, edge and core), providing localised processing to reduce latency and im-

prove reliability.

Middleware provides an abstraction layer that manages inter-cluster resource allo-

cation, ensuring that tasks are efficiently distributed across fog nodes and reduc-

ing reliance on distant cloud infrastructures. Furthermore, this chapter presents a

comprehensive evaluation of the proposed approach, demonstrating its effective-

ness in handling task scheduling and load balancing in various network topologies.

6.1 Clustering in Fog Computing

Given the decentralised nature of fog environments, clustering has emerged as an

essential strategy for organising and managing resources effectively. Clustering

aligns naturally with the hierarchical structure of the internet, where networks

operate as Autonomous Systems (AS), each managed independently but collabo-

rating through predefined agreements.

Existing clustering approaches in fog computing primarily focus on cluster forma-

tion. Several studies optimise clustering based on factors such as power consump-

tion, latency, and resource distribution. However, these approaches often treat

clusters as isolated entities, neglecting the potential benefits of interoperability

between clusters. Without mechanisms for inter-cluster communication and coor-

dination, fog networks risk inefficiencies and fragmentation.

Middleware can provide a robust framework to address this gap. By enabling in-

teraction between clusters, middleware solutions can improve resource utilisation,

fault tolerance and support dynamic workload distribution. This work explores

how middleware can bridge the gap in fog clustering through a middleware-enabled

collaborative fog computing ecosystem.

101

Clustering plays a critical role in fog computing by organising computing resources

to optimise performance and efficiency. Several studies have investigated various

aspects of clustering in fog environments. The work in [187] formulates the clus-

tering problem as an optimisation task, aiming to minimise power consumption

while meeting user latency requirements. Their approach organises small cell sites

into clusters for processing user requests. Similarly, Martins et al. [188] propose

a clustering algorithm based on node location but does not address inter-cluster

collaboration.

The research in [189] explores clustering in the context of IoT, grouping IoT de-

vices to manage data flow efficiently. Their approach introduces the concept of

fog domains and fog colonies, with hierarchical control mechanisms to manage

clusters. Meanwhile, the work in [190] adopts a cloud-centric clustering approach,

where clusters are controlled by the cloud and led by designated fog nodes. This

study formulates clustering as a mixed-integer linear programming problem and

introduces an agent and platform manager, though it does not delve into their

operational details.

A common theme across these studies is a focus on cluster formation. However, in-

teroperability between clusters remains largely unexplored. Existing solutions lack

mechanisms for seamless collaboration between clusters, which limits their scala-

bility and adaptability in heterogeneous fog environments. Middleware presents a

potential solution, providing a structured framework to facilitate interoperability

and coordination between clusters.

6.2 Problem Description

Fog computing environments face significant challenges due to the inherent char-

acteristics of fog nodes: they may be mobile, transitory, or volunteer nodes avail-

able only for brief, unpredictable periods [22]. This volatility, combined with the

heterogeneous nature of both fog nodes and IoT devices, creates a fundamental

problem: How can fog computing systems ensure reliable service delivery

102

and efficient resource utilisation when individual nodes are unreliable

and resources are fragmented across isolated clusters?

6.2.1 Core Challenges

Current fog computing deployments face three interconnected challenges:

Resource Fragmentation

While clustering has emerged as a natural organisational strategy for fog nodes

(mirroring Autonomous Systems in internet architecture), existing approaches

treat clusters as isolated entities. This isolation leads to:

• Underutilisation of resources in some clusters while others are overloaded

• Inability to handle peak loads that exceed a single cluster’s capacity

• Service unavailability when requested resources exist in neighbouring clusters

but cannot be accessed

Lack of Interoperability

Despite extensive research on cluster formation and optimisation, the fog comput-

ing community has largely overlooked inter-cluster cooperation. Current clustering

solutions:

• Focus exclusively on intra-cluster organisation

• Provide no mechanisms for clusters to share resources or coordinate tasks

• Cannot leverage the collective capacity of multiple clusters to improve reli-

ability

103

Dynamic Resource Management

The transient nature of fog nodes requires adaptive resource management that

current solutions cannot provide:

• Static cluster configurations cannot adapt to nodes joining or leaving

• No mechanisms exist for redistributing loads when nodes fail

• Lack of coordination between clusters prevents optimal task placement

6.2.2 Illustrative Scenario

Consider a smart city deployment where fog clusters are organised by district. Dur-

ing a major event in District A, the local fog cluster becomes overloaded with video

analytics tasks from surveillance cameras. Meanwhile, the neighbouring District

B cluster has idle resources. Without inter-cluster communication mechanisms:

• District A must either drop tasks or route them to the distant cloud

• District B’s resources remain unused despite being geographically proximate

• The overall system fails to meet QoS requirements despite having sufficient

aggregate resources

6.2.3 Research Gap

Existing clustering research in fog computing (as reviewed in Section 6.1) has

established methods for cluster formation based on factors like power consump-

tion, latency, and geographic location. However, these approaches stop at cluster

boundaries, creating artificial barriers that prevent efficient resource utilisation

across the fog layer.

This chapter addresses this gap by proposing a middleware-enabled approach that:

104

1. Enables resource sharing both within and across fog clusters

2. Provides mechanisms for inter-cluster load balancing

3. Maintains the autonomy of individual clusters while enabling cooperation

4. Adapts to the dynamic nature of fog environments

6.3 System Model

The system architecture follows the three-layer fog architecture. The three-layer

fog architecture (figure 6.1) consists of the user or IoT layer, fog layer and the

cloud layer. The fog layer is modified by introducing a centralised middleware

clustered approach as discussed below. Details of the middleware framework and

algorithms for cluster management are as presented in 4.

Figure 6.1: Fog Clustered Architecture

6.3.1 IoT/User Layer

The first layer has devices which interface with the external environment to collect

relevant data. These devices sense environmental stimuli and collect readings over

105

time under little or no direct human control or they may be devices under the

direct control of a human user requesting services. The main characteristics of

this layer are 1) Heterogeneity (in volume, velocity, value, variety and veracity of

data) [191]. 2) Little or no computational power to process the data they produce

[3]. Consequently, the data they produce will have to be processed at another

layer (Fog or Cloud). 3) Limited power supply. Most IoT devices run on batteries

[192].

6.3.2 Cloud Layer

The cloud layer consists of data centre computational, storage and networking

resources which are available on-demand for users. The cloud has significant re-

sources to process requests, however, the distant location of the cloud relative to

the users means that processing in the cloud would be unproductive for applica-

tions requiring lower response times. Furthermore, the volumes of data produced

could be prohibitive to send all to the cloud for processing as it would clog the

network. The objective is thus to make use of fog nodes for processing requests as

much as possible and to leave the cloud for resource-intensive and delay-tolerant

applications.

In this model, the cloud is for the orchestration of services and applications. Delay-

sensitive data is only sent to the cloud as a last resort when there are no available

resources at the fog layer. It deploys services to fog nodes to make them as close

as possible to the data source.

6.3.3 Fog Layer

The fog layer consists of processing, storage and networking resources that lie be-

tween the data producers (users) and the cloud. In the middleware-based model

proposed in this work, fog nodes are organised into clusters based on the Au-

tonomous Systems(AS) model in networking.

106

The fog layer is modelled as a graph G(V,E) with vertices V as the set of fog

nodes and edges E as the set of links connecting fog nodes. We define sub-

graphs G1(V1, E1), G2(V2, E2) ... Gn(Vn, En) - fog clusters, and another subgraph

G′(V ′, E ′) such that

∀Gi(Vi, Ei),∃vi ∈ V ′ (6.1)

∀Gi(Vi, Ei),∃eij ∈ E ′ (6.2)

Nodes which satisfy (6.1) are called fog cluster controllers/brokers and the links

in (6.2) are inter-cluster links.

Each node vi is characterised by a tuple {mi, ci} wheremi is the processing capacity

of the node in Million Instructions Per Second (MIPS), ci is the processing cost

for node i.

A fog cluster is modelled as an internet Autonomous System (AS), i.e. fog nodes

within the same cluster are under common administrative control. ASs establish

relationships with other ASs based on agreed terms. Inter-cluster resource sharing

and collaboration require a common platform–middleware.

6.4 Evaluation and Results

This section evaluates the proposed middlewares ability to balance load among fog

nodes within and across clusters, schedule incoming user requests with different

scheduling schemes and communicate across fog clusters with different network

topologies. One functionality of the middleware in a fog cluster is to manage

the load among fog nodes within the cluster and to send requests to neighbour-

ing clusters for processing. Hence there are interfaces for communicating with

other fog devices as well as clusters. Furthermore, it evaluates the performance

of different scheduling schemes from the literature with different applications of

107

varying delay-tolerance to evaluate middlewares ability to meet the Quality of

Service (QoS) requirements of applications. Lastly, it investigate the performance

of the middleware in different network environments in terms of topology and

inter-cluster distances.

Middleware components are implemented in a clustered fog environment using

OMNeT++1 as discussed in chapter 3. The simulation is implemented using

the INET2 framework and extending FogNetSim++ [152] to support clustering.

OMNeT is a C++ based simulator for modelling communication networks, multi-

processors and distributed systems. The INET framework provides protocols and

models for modelling the internet stack in OMNeT. In addition, FogNetSim++

provides a framework for simulating fog systems to utilise INET’s models.

Table 6.1: Simulation Parameters

Parameter Value
Simulation Tool Omnet++ 6.0.3
Frameworks INET 3.6.8, FogNetSim++
Programming Languages C++, NED Language
Number of Layers/ Fog Clusters/ 3/3/variable
Fog Nodes per Cluster
Required MIPS for user requests 10 MIPS
Fog Node MIPS 1000 MIPS
Message Lengths 1024

OMNeT is well suited for this study because whereas other fog simulation tools

focus on a specific aspect of fog computing, mostly resource management [143],

with OMNeT, INET and FogNetSim it is possible to investigate the behaviour of

the system at the network and application level. Also, its C++ implementation

means simulations are more scalable and run faster than other tools written in

other languages such as Java or Python. Table 6.1 shows details of the parameters

used in the simulation study. User requests are modeled as a poison process with

interarrival times following the exponential distribution with a rate of λ = 0.2.

1https://omnetpp.org/
2https://inet.omnetpp.org/

108

6.4.1 Inter-cluster Resource Sharing

IoT devices send requests and data to middleware and receive output under ex-

pected conditions without knowledge of where the processing occurs. At the fog

layer, middleware ensures that the processing load is shared among fog devices

within its cluster and with other clusters, avoiding overutilisation or underutilisa-

tion of nodes while ensuring that application performance expectations are met.

Figure 6.2 shows the simulation setup for the three clusters used in the experi-

ment. The variable x represents the distance between the first and second clusters.

The distance between the second and third clusters is five times of x. Also, for

this evaluation, all user requests are sent to the first cluster and forwarded to the

others.

Figure 6.2: Inter-cluster distances

User requests at clusters are processed using middleware Algorithms 1 and 3 as

discussed in chapter 4. Initial configuration of the middleware is dome with algo-

rithm 2. Users send requests which include the processing time and constraints

such as cost and required computational resources (MIPS). The cluster/fog con-

troller searches for a node within the cluster that can process the request and also

satisfy the constraints and forwards the request to it. If no node is available within

the cluster, the controller searches the list of known clusters for one with resources

for the request. The request is forwarded to the cluster with available resources.

Sending to the cloud is the final option.

Figures 6.3 show the system’s performance with load balancing processing within

the same cluster as a benchmark. The results show better results for processing

109

Figure 6.3: Response Times for Applications

within the cluster as expected and better results for processing in a neighbouring

cluster instead of the cloud.

The response time is constant for processing within the same cluster, which was

expected as the distance between fog nodes within the same cluster remains un-

changed. The delay varied with distance for processing in the second and third

clusters. Response time for processing on the third cluster increased much faster

compared to the second cluster. Nonetheless the delay remained under 30ms for

processing at a cluster which is 2.5km from the host cluster.

6.4.2 Scheduling

Task scheduling in fog computing has been studied extensively and is identified

as an important resource management function for fog computing [136]. Nonethe-

less, most of the work on scheduling in fog focuses on node-level scheduling of

tasks. To the best of our knowledge, no work has been done to evaluate intra-

cluster scheduling. This section evaluates the performance of the middlewares

intra-cluster scheduling.

The experiments compare the performance of four traditional scheduling algo-

rithms from the literature for four applications with different priorities. The algo-

rithms in the study are chosen because they are often used as benchmarks against

which new proposals are evaluated. Also, due to their static nature, they are useful

for evaluating the middleware’s queue implementation.

110

Figure 6.4: Response Times for Scheduling Schemes

Application Priorities: App 1: Highest; App 2: High; App 3: Medium; App 4:
Low

Scheduling Scheme Implementation
First-Come-First-Served (FCFS) Requests are executed in the order they

arrive.
Last-Come-First-Served (LCFS) The most recently arrived request is exe-

cuted first.
Round-Robin (RR) Requests are executed in a cyclic order.
Max-Min (MAX) Prioritises requests with higher resource

demands first, ensuring large tasks
progress while smaller tasks wait.

Min-Min (MIN) Selects the smallest available request and
schedules it first. It reduces overall com-
pletion time but may starve larger jobs.

Priority Scheduling (PRIORITY) Requests are scheduled based on their pri-
ority levels. Higher-priority requests run
first.

Table 6.2: The scheduling schemes used and their implementation approach
for the experiments

The results for the simulation show that priority queuing produces the best results

overall in terms of response time, although it does not guarantee that applications

delay requirements are met. Last-Come-First-Served (LCFS) and First-Come-

First-Served (FCFS) produced the worst results. Also, for all the algorithms apart

from LCFS, app 1 (the highest priority application) had better delay performance

than the other applications, although only priority scheduling gave the best results

for it. Figures 6.4 and 6.5 show the results for response time and utilisation for

the scheduling schemes evaluated.

111

Figure 6.5: Fog Node Utilisation for different scheduling schemes

The results from comparing different scheduling schemes show that priority schedul-

ing produces better results overall relative to other other approaches, which is con-

sistent with similar work done in non-clustering fog/edge environments. However,

the response time is significantly higher compared to the results from running the

application without scheduling (figure 6.3). The increased delay results from the

queuing of requests in the scheduling schemes. The inclusion of the queuing time

significantly increases the delay performance of applications. This result justifies

the need for clustering and load-balancing because as discussed in section 6.4.1,

processing at a distant cluster still produces low response times.

6.5 Conclusion

This chapter has introduced a middleware-based framework designed to enhance

interoperability and resource management in fog computing environments. By

leveraging an Autonomous Systems-inspired clustering approach, the proposed

middleware enables efficient intra- and inter-cluster resource allocation. The evalu-

ation results indicate that the middleware effectively balances computational load,

minimises response times, and optimises resource utilisation across fog nodes.

The findings show the importance of middleware in addressing the challenges of

heterogeneity and dynamic resource availability in fog computing. By managing

112

communication and collaboration between clusters, middleware reduces reliance

on cloud resources and improves the availability of fog-based applications.

CHAPTER 7

Middleware-enabled Fog Peer-to-Peer

Model

Fog computing, as an emerging paradigm, originally proposed a hierarchical ar-

chitecture where computational resources increase as one moves from the edge

towards the cloud [3, 96, 193, 194]. This model relies on multiple layers of nodes,

with lower layers handling the pre-processing of user requests and higher layers,

including the cloud, performing more resource-intensive tasks. However, this ap-

proach faces significant challenges: processing tasks could end up being routed all

the way to the cloud, creating inefficiencies and potentially undermining the very

purpose of fog computing reducing latency and increasing real-time processing at

the edge. Additionally, the hierarchical design creates potential bottlenecks and a

single point of failure, particularly in the centralised nodes that act as intermediary

layers for request forwarding.

To address these issues, this chapter introduces a novel solution: a middleware-

based, peer-to-peer (P2P) model for the fog layer. Unlike the hierarchical model,

the proposed approach enables fog nodes to interact as peers within an unstruc-

tured, decentralised network. Fog nodes send requests to nodes in their peers in

the overlay network first rather than defaulting to higher layers, thus reducing de-

pendency on nodes at high layers (the core or cloud). The aim of this approach is

113

114

to improve reliability by increasing the availability of services close to the network

edge.

The problem with the hierarchical fog model is its reliance on a centralised struc-

ture. Requests cascade upwards to the cloud when lower-layer nodes cannot pro-

cess them. While early fog computing models aimed to optimise the distribution

of computational load, they inadvertently introduced potential failure points and

inefficiencies as the system scaled. Therefore, the challenge is how to improve the

performance of applications at the fog layer without relying on a single centralised

node, which could become a bottleneck or single point of failure.

In response to these concerns, this chapter evaluates a decentralised, peer-to-peer

fog architecture, comparing its performance with a cluster-based approach. Both

architectures are implemented using the proposed middleware framework. Using

the self-adaptive mechanisms presented in section 4.4, middleware can adapt to

both architectures. The self-adaptive mechanism allows the framework to switch

between different configurations to optimise performance in a distributed envi-

ronment where nodes may be unreliable or frequently changing. The evaluation

presented here highlights the advantages and drawbacks of centralised versus de-

centralised architectures, contributing insights into how the fog layer can be de-

ployed for better reliability and performance in edge-based applications.

The middleware-based P2P solution presented in this chapter is an important con-

tribution of this thesis. It provides a flexible, decentralised framework for the fog

layer. The chapter also includes a detailed simulation-based comparison of the

decentralised P2P model and the hierarchical cluster approach. The results un-

derscore the need for adaptive strategies in fog resource management, as proposed

throughout this thesis.

115

7.1 Problem Statement

The fog layer is unique because integrates edge and cloud computing resources

to support real-time, low-latency applications. Traditionally, fog computing has

been implemented with a hierarchical structure, where nodes with progressively

greater resources are higher up in the architecture. This structure, originating

from early fog computing definitions, is widely represented in tools like iFogSim.

In these architectures, user requests are initially processed at the lowest fog node

and forwarded upwards if not handled locally. Eventually, if a request cannot be

processed at any layer, it is sent to the cloud. This hierarchical forwarding model,

however, suffers from inefficiencies, particularly as requests are often routed to

the cloud even when other fog nodes at the same layer might have the necessary

resources to process them.

Peer-to-peer (P2P) systems, both centralised and decentralised, offer potential so-

lutions to these issues [195]. Centralised P2P systems rely on a central server to

manage the network and provide information about resource locations, while de-

centralised P2P systems distribute this responsibility across all nodes, ensuring no

single point of control. The decentralised nature of P2P networks can offer signif-

icant advantages in terms of scalability, fault tolerance, and resource distribution,

making them well-suited for fog computing environments. The symmetric role of

nodes in a decentralised P2P system eliminates the dependency on a central node,

mitigating risks associated with bottlenecks and failures.

A decentralised P2P architecture for the fog layer, where nodes connect and inter-

act as peers in an unstructured network is proposed. This approach allows nodes

to forward requests to nearby neighbours first, rather than relying on higher-layer

nodes or the cloud. This design not only improves system efficiency but also

enhances resilience by ensuring that no single node is critical to the systems op-

eration. By considering the inherent unreliability of fog resources, where nodes

frequently join and leave the network, this work explores how such a decentralised

116

architecture can handle dynamic changes in network topology and resource avail-

ability without compromising performance or reliability.

The traditional hierarchical architecture of fog computing, while intuitive in its

design, presents fundamental limitations that undermine the core benefits of fog

computing. This chapter addresses a critical problem: How can fog computing

systems avoid the inefficiencies and vulnerabilities inherent in hierar-

chical architectures while maintaining effective resource utilisation and

service delivery?

7.1.1 Limitations of Hierarchical Fog Architectures

The hierarchical fog model, as originally proposed [3], organises nodes in layers

with increasing computational resources from edge to cloud. While this structure

appears logical, it creates several critical problems:

Vertical Routing Inefficiency

In hierarchical systems, requests follow a rigid upward path when local processing

is unavailable:

• Requests cascade through multiple layers before reaching capable nodes

• Lateral resources at the same layer remain unused

• Many requests unnecessarily reach the cloud, negating latency benefits

• Network congestion increases due to concentrated vertical traffic

Structural Vulnerabilities

The hierarchical design introduces architectural weaknesses:

• Intermediate layer nodes become bottlenecks under high load

117

• Single points of failure exist at each hierarchical level

• System resilience depends on the availability of specific nodes

• Scalability is limited by the capacity of upper-layer nodes

Resource Underutilisation

The rigid structure prevents optimal resource usage:

• Peer nodes with available resources cannot directly assist each other

• Load balancing is restricted to vertical distribution

• Dynamic resource allocation across layers is complex and inefficient

7.1.2 Illustrative Scenario

Consider a smart manufacturing environment with fog nodes distributed across a

factory floor. In a hierarchical model:

1. Machine A generates a compute-intensive analytics request 2. Its local fog node

lacks resources, so the request moves to the area controller 3. The area controller

is overloaded, forwarding the request to the plant-level server 4. Eventually, the

request reaches the cloud for processing

Meanwhile, Machine B’s fog node in the same area has idle resources but cannot

assist because the hierarchical structure prevents direct peer communication. This

results in: - Increased latency (multiple hops to cloud) - Wasted local resources

(Machine B’s idle capacity) - Network congestion (vertical traffic concentration) -

Potential failure if any intermediate node fails

118

7.1.3 The Need for a Decentralised Approach

These limitations reveal that the hierarchical model, despite its widespread adop-

tion in fog computing implementations (including popular simulators like iFogSim),

fundamentally conflicts with fog computing’s goals of:

• Minimising latency through edge processing

• Maximising resource utilisation across distributed nodes

• Ensuring system resilience and fault tolerance

• Supporting dynamic and scalable deployments

This chapter investigates whether a decentralised, peer-to-peer (P2P) architecture

can overcome these limitations while maintaining the benefits of fog computing.

Specifically, it explores:

1. Can a P2P fog architecture reduce dependency on hierarchical routing?

2. How does peer-based resource sharing compare to hierarchical distribution?

3. What are the trade-offs between centralised coordination and decentralised

autonomy?

4. Can middleware effectively support both architectural models?

The following sections present the middleware-enabled P2P solution and provide a

comprehensive comparison with the hierarchical cluster-based approach presented

in Chapter 6.

7.2 Proposed Model

As discussed in Section 4.4.2, the proposed middleware employs the MAPE-K

(Monitor, Analyse, Plan, Execute over shared Knowledge) self-adaptation model

119

to dynamically manage the fog environment. The adaptation algorithm and frame-

work are illustrated in figure 4.3 and algorithm 2. This section evaluates the im-

plementation of the peer-to-peer (P2P) architecture presented in 4 and compares

it to the clustered approach.

7.3 Cluster-Based Architecture

In the cluster-based architecture (chapter 6), fog nodes are organised into clusters,

each managed by a fog controller. Middleware runs both on the fog nodes and

on the controller/broker nodes. IoT requests are sent to the controller, which

processes the request and selects an appropriate fog node within the cluster to

handle it. If no suitable fog node is available within the cluster, the controller

forwards the request to a neighbouring cluster with available resources. Clusters

share resources by updating neighbouring cluster controllers about their available

resources.

7.4 Peer-to-Peer Architecture

In the decentralised P2P approach, all fog nodes act as peers within an overlay

network. Each fog node maintains connections with two other nodes, forming a

ring-chain topology. Nodes share resources by forwarding requests to their con-

nected peers. User requests may propagate across multiple peers until a suitable

node is found to process them. Middleware manages the P2P system, ensuring

efficient request handling and resource allocation.

Figure 7.1 shows the two architectures used in this study. The peer-to-peer network

creates an overlay network which is independent of the physical topology. Nodes

connect to each other based on availability to join the overlay and proximity to

peers. In the cluster case, the central node (FN5) exchanges messages with all

other fog nodes as well as from user nodes.

120

(a) Clustered approach
(b) Peer-to-peer overlay network

Figure 7.1: Architectural Approaches

7.4.1 Peer Bootstrapping

Bootstrapping refers to the process by which new nodes to a peer-to-peer system

discover existing peers and form connections with them to join the network [196].

The proposed model adopts a decentralised mechanism to avoid reliance on central

servers (bootstrapping nodes). When a new node ni joins the network, it selects

two existing nodes nj and nk as its peers based on a cost function C(ni, nj) that

considers factors such as propagation delay dij between ni and nj, and computa-

tional capacity Rj of node nj.

The cost function is defined as:

C(ni, nj) = αdij + β
1

Rj

, (7.1)

where α and β are weight factors that balance delay and resource availability.

A new node ni selects its two nearest peers by minimizing C(ni, nj):

nj, nk = arg min
nx∈N

C(ni, nx). (7.2)

121

7.4.2 Request Handling

When a fog node ni receives an IoT request r, it either processes the request locally

or forwards it to one of its connected peers. The forwarding decision is based on:

• Local resource availability Ri

• Request priority P (r)

• Estimated processing time T (r, nj) on peer nj

If the request cannot be processed locally, it is forwarded to the peer nj that

satisfies:

nj = arg min
nx∈Pi

T (r, nx). (7.3)

To prevent excessive forwarding, a counter cr and QoS constraint Q(r) are en-

forced. The request is dropped if cr > Q(r).

The bootstrapping process is illustrated in the sequence diagram in figure 7.2. In

the figure, fog node 1 is connected to nodes 3 and 2 as its neighbours, while node

4 is a new node attempting to join the network by reaching out to node 1.

7.4.3 Peer Connection Management

Each node maintains only two peer connections. When a node ni leaves the net-

work, it informs its neighbours nj and nk, providing them with each other’s ad-

dresses. The peers then establish a direct connection or reconfigure their connec-

tions using the selection process described in section 7.4.1.

This structured approach ensures a scalable and resilient P2P-based fog computing

system, with efficient resource allocation and minimal network overhead.

122

Figure 7.2: Bootstrapping process for new peers to join the network.

7.5 Evaluation

To evaluate the proposed middleware, simulations are conducted in OMNeT++

for both cluster-based and peer-to-peer architectures. OMNeT++ is a framework

designed for network simulations, with a modular approach and flexibility that

make it well-suited for evaluating internet-based architectures. The INET frame-

work extends OMNeT++ for internet protocol simulations, while FogNetSim++

further extends INET to include IoT application protocols such as MQTT.

The simulations include user nodes (IoT devices), fog nodes, and a cloud data

centre. Each user node runs a single MQTT application that generates sensor

data, forwards it to the next processing layer, and receives a response. Since user

nodes have limited processing capabilities, they send MQTT requests to fog nodes

for processing. In the cluster-based architecture, these requests first arrive at a

123

Table 7.1: Simulation Parameters

Parameter Value
Simulation Tool OMNeT++ 6.0.3
Frameworks INET 3.6.8, FogNetSim++
Programming Languages C++, NED Language
Required MIPS per IoT request 10 MIPS
Fog Node Capacity 1000 MIPS
Number of IoT Requests 3500
Request Arrival Distribution Exponential (λ = 100ms)
Message Length 1024 bytes

broker, which selects an appropriate fog node within its cluster for processing. If

resources are unavailable at the fog layer, requests are forwarded to the cloud.

Each fog node has a processing capacity of 1000 MIPS and operates as a single

processing unit without virtual machines. The cloud consists of 20 processing

units with a combined capacity of 90000 MIPS. The arrival of IoT requests follows

an exponential distribution with a mean inter-arrival time of λ = 100ms. The

parameters used for the simulations are shown in table 7.1.

7.6 Analysis of Results

The results of the simulation of the peer-to-peer network show the relationship

between the distance between peer nodes in the peer-to-peer architecture and the

response time of IoT applications. The results indicate that while processing at

the fog layer significantly reduces delay, the distance between fog nodes influences

resource-sharing efficiency. When fog nodes are within 5 km of each other, the

delay remains below 100 ms. However, for every additional kilometre, the delay

increases by approximately 20 ms.

In real-world deployments, peer node distances vary significantly based on the

application domain and deployment environment. In fog and edge networks, the

physical area covered can contain hundreds of thousands of devices, meaning that

network grade and quality can vary by orders of magnitude, from DSL lines to fibre

optics, while the distances involved result in much higher latencies between nodes

124

than in cloud data centres. In industrial settings, IoT sensors on factory floors

can often use wired connections, minimising distance-related delays. However,

mobile resources, such as autonomous vehicles, or isolated resources, such as wind

turbines in the middle of a field, require alternate forms of connectivity, where

distance becomes a critical factor.

Agricultural deployments face unique challenges, as poor internet connectivity is

one of the most common issues in smart farms, especially in rural areas. In these

scenarios, fog layers are installed in local farms and are responsible for real-time

data analytics such as predicting pests and diseases, yield prediction, weather

prediction, and agricultural monitoring automation. The distributed nature of

agricultural environments means fog nodes may need to cover extensive geograph-

ical areas, making distance-aware deployment strategies essential.

Middleware’s adaptive mechanisms ensure that the P2P architecture remains vi-

able across diverse deployment scenarios, from dense urban environments with

closely spaced nodes to sparse rural deployments where nodes may be separated

by significant distances. The fog computing paradigm’s emphasis on proximity

to end-users and dense geographical distribution aligns well with our adaptive

approach, allowing the middleware to optimise performance based on actual de-

ployment conditions rather than assuming uniform node distribution.

Figure 7.3: Utilisation among peer nodes

The results for the utilisation of fog nodes, which are connected as peers, are shown

in Figure 7.3. In this figure, fog node 1 has nodes 2 and 5 as neighbours, with node

2 as its closest neighbour. User requests are sent to node 1. As the figure shows,

125

when node 1’s utilisation reaches a hundred per cent, it starts sending requests to

its best neighbour—node 2. Node 5 receives requests once node 2 is overloaded.

Figure 7.4: Response times for Peer-to-Peer, Clustered, and Cloud processing

Now, turning to the comparison of the peer-to-peer and cluster approaches, figure

7.4 compares the response times of the peer-to-peer, clustered, and cloud architec-

tures. The peer-to-peer architecture demonstrates the lowest response time when

processing occurs at the first available fog node. In contrast, the clustered archi-

tecture exhibits higher response times due to the additional overhead of forwarding

requests to a broker before reaching the processing node. Nonetheless, both fog-

based architectures significantly outperform cloud processing, which incurs a delay

of approximately five times higher. These findings align with previous research,

such as [197].

Figure 7.5 presents the mean utilisation across the different architectures and the

distributions for the user requests, inter-arrival delays, and processing delays. The

cloud server exhibits a slow rise in utilisation, remaining below 40% throughout

the simulation. In contrast, the utilisation of fog nodes increases rapidly. In the

clustered scenario, utilisation remains below 80%, as the broker node efficiently

126

distributes traffic among fog nodes. However, in the peer-to-peer scenario, utilisa-

tion quickly reaches nearly 100% since requests are only forwarded when a node

cannot process them. Despite this high utilisation, application performance re-

mains stable, as forwarding only occurs when necessary.

(a) Fog node utilisation over time.

(b) Inter-arrival time distribution. (c) Processing delay distribution.

Figure 7.5: Comparison of utilisation and request distribution characteristics.

7.7 Conclusion

The simulation results demonstrate that the peer-to-peer architecture provides

lower response times compared to the clustered architecture and cloud-based pro-

cessing. While clustered architectures benefit from load balancing via a broker,

the additional routing overhead increases the delay. In contrast, the peer-to-peer

architecture leverages direct communication between fog nodes, significantly im-

proving response time and resource utilisation.

127

However, the effectiveness of peer-to-peer architectures is influenced by node prox-

imity, as increasing the distance between peers leads to higher communication de-

lays. The utilisation results indicate that peer-to-peer fog nodes reach full capacity

more rapidly, though this does not negatively impact performance, as request for-

warding ensures continued processing efficiency.

Future research should explore dynamic peer selection strategies and hybrid ar-

chitectures that combine clustering with peer-to-peer communication to optimise

resource allocation further. Additionally, real-world deployments of the proposed

middleware should be investigated to validate the findings under practical condi-

tions.

CHAPTER 8

Discussion and Future Directions

The findings from evaluating the proposed middleware and its components produce

promising outcomes. The adaptive design demonstrates the benefits of adapting

the fog system based on external and internal factors. The results from evaluating

different architectures showed the relative merits and demerits of a centralised and

decentralised architecture. This justifies the need for an adaptive self-configuration

design.

This section discusses the key findings of the research under three themes: (1)

availability and reliability of applications, (2) adaptiveness and distributed archi-

tectures, and (3) other factors influencing performance.

8.1 Availability and Reliability

This thesis has demonstrated the role of availability and resource pooling in the

context of fog computing and their impact on application performance. The find-

ings in section 5.4 show that high availability leads to improved system reliability,

which is relevant in fog computing environments as resources are distributed across

multiple nodes and clusters. By extending resource availability from individual

nodes to clusters and expanding further through inter-cluster resource pooling,

128

129

the system’s robustness and response time improve [198]. An increase in availabil-

ity not only improves reliability but also enables the efficient processing of requests

at the fog layer, where resources are inherently constrained and unreliable.

At the fog layer, the unreliability of nodes requires constant tracking and moni-

toring for effective resource management. The middleware framework is critical

in this regard, as it provides a transparent way to store, monitor, and utilise re-

sources. The middleware approach increases the fog layers capacity for resource

management, which directly leads to increased availability [159]. Middlewares

ability to track resources enables dynamic allocation and load balancing and en-

sures that nodes at the fog layer can collaborate effectively to meet application

demands. This mechanism reduces the risk of overloading individual nodes and

thus improves application latency.

The results of the performance evaluation, presented in section 6.4, highlight the

significant advantages of inter-cluster collaboration in terms of response time and

overall application performance. Sharing resources within and across clusters at

the fog layer improves the performance of fog applications and offers a more re-

sponsive alternative to relying solely on the cloud. Also, balancing loads across

different nodes at the same fog layer provides better performance outcomes than

processing on a single node, which might lead to queuing delays [25, 199]. Addi-

tionally, sharing resources across clusters further reduces resource bottlenecks and

the latency associated with reliance on the cloud.

However, while resource pooling and sharing can improve performance, load bal-

ancing at the fog layer does not guarantee optimal outcomes in all scenarios [200].

Variations in incoming requests, network conditions, and the dynamic availability

of fog nodes can lead to unpredictable performance, indicating that the success

of load-balancing strategies depends on the characteristics of user requests and

the system’s architecture. Despite this, the findings provide valuable insights into

the potential of middleware-enabled resource sharing to address these challenges,

underscoring its importance in maintaining application performance in dynamic

environments.

130

The evaluation of the middleware in chapter 5 further reinforces the importance of

resource sharing as a central component in managing the fog computing environ-

ment effectively. As outlined in section 5.4, the middleware facilitates load sharing

among fog nodes, ensuring that latency is minimised and application performance

is optimised. These results contribute to the growing body of work in edge and

distributed computing, offering a comprehensive framework for improving ser-

vice availability and resource utilisation in dynamic and unpredictable conditions.

Through the inter- and intra-cluster resource-sharing mechanisms, this research

highlights the relationship between an increased resource pool at the fog layer and

application performance and reliability, thereby providing a robust foundation for

future developments in edge-based computing architectures.

In summary, this research emphasises the role of availability, resource pooling,

and middleware in the performance of fog computing systems. By extending the

resource pool at the fog layer and using effective load-balancing strategies, the

findings demonstrate how these elements collectively improve the performance of

applications in dynamic environments. This contribution paves the way for fur-

ther advancements in the field, offering practical solutions for addressing resource

management challenges in distributed edge computing.

8.2 Adaptiveness and Distributed Architecture

A novel contribution of this study is the use of the MAPE-K self-adaptation frame-

work in middleware for fog resource management (section 4.4.2). The adaptive

approach enables the dynamic implementation of different architectures at the fog

layer based on environmental conditions. The behaviour of fog nodes is modified

using the self-adaptive mechanism in middleware. Dynamically changing the fog

architecture to suit the environment is essential to fog computing. Prior studies

have demonstrated the usefulness of different applications and environments at

the fog layer [185, 189, 190].

131

On the question of the usefulness of an adaptive architectural approach to fog

computing, the results presented in Chapter 7 highlight the relative benefits of

centralised and distributed architectures in a fog scenario. The unstructured de-

sign choice used for the decentralised approach enables the system to capitalise

on the inherent benefits of P2P architectures, such as improved scalability, flex-

ibility for diverse applications, and a lower barrier to entry. This is particularly

relevant for dynamic applications like vehicular fog computing, where fog nodes

are mobile and subject to frequent changes in connectivity and availability [201].

The adaptability of the proposed middleware allows for real-time reconfiguration

of the fog architecture to ensure continuous service delivery despite environmental

fluctuations.

While a distributed or peer-to-peer fog architecture offers high scalability and

flexibility, a centralised or clustered approach presents advantages in terms of re-

source utilisation and load management. In a centralised system, the coordination

of resources is under tighter control. This leads to a more efficient workload distri-

bution and enhanced reliability as control allows the implementation of resource

management techniques to suit application needs. The trade-offs between these

architectures are significant: whereas a P2P system promotes decentralisation and

ease of deployment, a centralised architecture ensures greater control and stability.

In the end, the choice between a P2P and a centralised fog architecture depends on

the specific requirements of the application. For highly dynamic and large-scale

environments, a distributed model provides better adaptability and scalability.

On the other hand, for applications that require strict control of resources and

reliability, a centralised approach may be more appropriate. This is further justi-

fication for the adaptive middleware approach proposed. Middleware that adapts

to the given fog environment plays a critical role in allowing dynamic architecture

selection.

132

8.3 Factors Contributing to Performance

Other factors at the fog layer influence application performance. The study shows

that one key factor affecting application performance is the proximity between

fog nodes, which directly impacts propagation delay. Increased propagation delay

leads to higher response times, reducing the overall efficiency of fog-based appli-

cations.

Different topologies at the fog layer exhibit varying performance characteristics.

The traditional hierarchical approach has been widely adopted in fog computing

[3]; however, alternative approaches proposed here, such as clustering and peer-

to-peer (P2P) configurations, offer distinct advantages that improve application

performance. The clustering-based architecture improves availability and reliabil-

ity by ensuring that a pool of fog nodes is available to process requests, reducing

potential failures and improving resource utilisation.

Similarly, a P2P approach to fog computing enhances the utilisation of fog nodes by

enabling direct communication and resource sharing among nodes without a strict

hierarchical structure. This reduces bottlenecks often associated with centralised

control and improves scalability.

Additionally, scheduling techniques at the fog layer play a crucial role in main-

taining application performance. Traditional scheduling approaches, such as First-

Come, First-Served (FCFS), do not effectively prioritise critical applications, which

would lead to suboptimal performance in time-sensitive scenarios. Priority schedul-

ing mechanisms have improved performance by ensuring that higher-priority tasks

receive timely processing, thus improving the quality of service for latency-sensitive

applications.

Overall, while the hierarchical approach has been commonly employed in fog com-

puting, adopting clustering and P2P strategies can yield substantial benefits in

133

terms of reliability, availability, and resource utilisation. Future work should ex-

plore hybrid models that leverage the strengths of multiple architectures to opti-

mise fog computing environments further.

Middleware is necessary at the fog layer to improve reliability of applications

8.4 Comparative Analysis with Existing Middleware Solutions

The middleware framework proposed in this thesis addresses several limitations

identified in existing fog middleware solutions (Table 2.2). This section briefly

compares the proposed approach with existing solutions to highlight its contribu-

tions and acknowledge its limitations.

8.4.1 Key Differentiators

Unlike existing fog middleware that typically focus on specific functionalities or ap-

plications, the proposed framework provides comprehensive resource management

through three distinguishing features:

Architectural Flexibility: While most existing solutions are designed for fixed

architectures—such as the hierarchical approach in [129, 130] or the distributed

approach in [114]—this middleware supports dynamic switching between hierarchi-

cal, clustered, and P2P architectures through the MAPE-K self-adaptation mech-

anism. This flexibility allows the system to adapt to changing environmental

conditions rather than being constrained to a single architectural paradigm.

Cross-Domain Resource Sharing: Unlike middleware solutions that limit re-

source sharing within single domains [129, 130] or require prior knowledge for

mobility support [138], the proposed framework enables transparent inter-cluster

and cross-domain resource sharing without predetermined mobility patterns. This

capability significantly expands the available resource pool and improves service

availability.

134

Generic Application Support: While several existing solutions target specific

applicationssuch as greenhouse IoT [35], healthcare privacy [133], or seismography

[114]—this middleware provides a generic framework that supports diverse appli-

cations through its services layer, making it suitable for various fog computing

scenarios.

8.4.2 Limitations and Trade-offs

Despite these advantages, the proposed middleware has certain limitations com-

pared to specialised solutions:

Security Overhead: Security-focused middleware like [132] and privacy-specific

solutions like [133] provide more robust security features than the current imple-

mentation. Applications requiring stringent security guarantees may benefit more

from these specialised solutions until security features are fully integrated into the

framework (as outlined in Future Directions).

Mobile Edge Computing Scenarios: Middleware designed specifically for Mo-

bile Edge Computing [125–128] may perform better in scenarios with highly mobile

end-devices like smartphones, as they are optimised for mobile-specific challenges.

The proposed middleware, while supporting mobility, is primarily designed for IoT

and stationary fog node scenarios.

Complexity vs. Simplicity: The adaptive nature of the proposed middle-

ware introduces additional complexity compared to single-purpose solutions. For

simple, static deployments with predictable workloads, lighter-weight middleware

focusing on specific tasks (e.g., data filtering [35]) may be more efficient due to

lower overhead.

8.4.3 Optimal Use Scenarios

The proposed middleware is particularly well-suited for:

135

• Dynamic environments where fog node availability fluctuates

• Applications requiring resource sharing across administrative domains

• Scenarios demanding architectural flexibility based on workload characteris-

tics

• Large-scale deployments where centralised and decentralised approaches must

coexist

Conversely, existing specialised middleware may be preferable for:

• Single-application deployments with well-defined requirements

• Highly secure or privacy-sensitive applications requiring domain-specific com-

pliance

• Pure mobile edge computing scenarios with predominantly smartphone clients

• Small-scale deployments where architectural adaptability is unnecessary

This comparative analysis underscores that while the proposed middleware pro-

vides a comprehensive and adaptive solution for fog resource management, the

choice of middleware should ultimately align with specific application requirements

and deployment constraints.

8.5 Future Directions

While the proposed middleware framework addresses the identified resource man-

agement gaps in fog computing, several issues remain open and require future

research. Future work in this domain should explore the following areas:

136

Evaluation in a Testbed or Real-World System

The effectiveness of the proposed framework has been demonstrated through simulation-

based evaluations. However, real-world deployment and validation on a physical

testbed or live fog computing system would provide deeper insights into its practi-

cal applicability, performance, and scalability under real-world constraints. Future

studies should consider deploying the middleware in diverse environments, such as

smart cities, industrial IoT, or vehicular fog computing, to assess its robustness in

dynamic and heterogeneous settings.

Convergence with Emerging Technologies

Fog computing continues to evolve alongside emerging technologies such as Software-

Defined Networking (SDN), Network Function Virtualisation (NFV), blockchain,

federated learning, and quantum computing. Integrating fog resource management

frameworks with these technologies introduces new opportunities and challenges.

Future research should explore how fog middleware can adapt to these advance-

ments to ensure interoperability, efficient resource allocation, and enhanced secu-

rity while leveraging the capabilities of next-generation computing paradigms.

Extending the Peer-to-Peer Model

The peer-to-peer (P2P) model in fog computing enables users to contribute com-

putational, storage, and networking resources in exchange for access to shared

resources. However, a key challenge is mitigating the dominance of free-riding

peers—nodes that consume resources without proportionally contributing to the

system [202]. This problem is particularly interesting for dynamic environments

such as vehicular fog computing, where nodes exhibit high mobility and unpre-

dictable availability.

A promising future direction involves extending the P2P model to incorporate

incentivisation mechanisms that encourage active participation and discourage

137

resource exploitation. This could involve integrating economic models such as

token-based incentive systems or credit-based reputation mechanisms [203]. Ad-

ditionally, convergence with volunteer computing paradigms [22] — where users

offer computational resources in return for rewards or recognition — could further

strengthen the sustainability of resource sharing in fog networks.

Machine Learning for Intelligent Resource Management

The adaptive capabilities of the proposed middleware could be improved through

the integration of machine learning techniques. While the current MAPE-K frame-

work provides rule-based adaptation, machine learning could enable more sophis-

ticated and predictive resource management strategies.

Future research should explore several ML-driven improvements:

Predictive Resource Allocation: Machine learning algorithms could analyse his-

torical patterns of resource usage, application demands, and node availability to

predict future resource requirements. This would enable proactive resource al-

location rather than reactive responses, potentially reducing response times and

improving overall system efficiency. Time-series forecasting models could predict

when specific fog nodes are likely to become overloaded or unavailable, allowing

the middleware to redistribute loads pre-emptively.

Intelligent Architecture Selection: Instead of using predefined rules for switching

between hierarchical, clustered, and P2P architectures, machine learning classifiers

could learn optimal architecture selection based on current network conditions, ap-

plication characteristics, and historical performance data. Reinforcement learning

approaches could continuously improve architecture selection decisions based on

observed outcomes.

Anomaly Detection and Self-Healing: ML-based anomaly-detection could identify

unusual patterns in fog node behaviour, potentially indicating failures, security

138

threats, or performance degradation. This would enable the middleware to im-

plement self-healing mechanisms before critical failures occur, improving system

reliability beyond current threshold-based monitoring approaches.

Dynamic QoS Optimisation: Machine learning could optimise Quality of Service

parameters by learning the relationship between resource allocation decisions and

application performance metrics. This would be particularly valuable for appli-

cations with varying QoS requirements, enabling the middleware to make more

nuanced trade-offs between competing demands.

The integration of machine learning presents challenges including the computa-

tional overhead of running ML models on resource-constrained fog nodes and the

need for sufficient training data in dynamic fog environments. Future work should

investigate lightweight ML approaches suitable for fog computing contexts and

distributed learning techniques that preserve privacy while enabling collaborative

intelligence across fog domains.

Security Features in Middleware

Security remains a critical concern in fog computing, particularly regarding the

trustworthiness of fog nodes and protection against malicious actors. Effective

resource management must incorporate mechanisms to ensure data integrity, ac-

cess control, and secure communication across fog nodes. Future extensions of

middleware should focus on:

• Trust and reputation mechanisms to assess and verify node credibility dy-

namically.

• Lightweight encryption and authentication techniques tailored for resource-

constrained fog nodes.

• Resilience against cyber threats, such as Distributed Denial-of-Service (DDoS)

attacks, rogue node infiltration, and unauthorised data access.

139

As security is an essential aspect of fog computing, future middleware architectures

must integrate adaptive security measures that evolve alongside emerging threat

landscapes while maintaining efficiency and scalability.

It is a significant challenge to draw conclusive proof of the benefits of a framework

or system solely based on the findings from experimental studies because, as dis-

cussed in chapter 3, the ideal scenario would be to evaluate a new approach within

the real-world environment where the system it will be deployed. However, the

findings from the simulation experiments and evaluation provide a strong basis to

justify the usefulness of an adaptive middleware for fog computing.

CHAPTER 9

Conclusion

This research presents a comprehensive middleware framework that addresses key

challenges in fog computing, including heterogeneity, resource sharing, and dy-

namic environment adaptability. By developing middleware-enabled clustered and

P2P fog architectures, this work demonstrates how resource pooling and adaptive

architectural selection improve system availability, reliability, and performance.

Integrating the MAPE-K self-adaptation framework within the middleware en-

sures that fog systems can dynamically adjust to environmental changes, improv-

ing resource utilisation and maintaining service quality.

The evaluation results validate the effectiveness of middleware-enabled clustering

and peer-to-peer approaches in reducing latency, balancing workloads, and enhanc-

ing application responsiveness. Furthermore, the study highlights the importance

of inter-cluster resource sharing and adaptive scheduling mechanisms in sustaining

fog computing performance. The development of a simulation tool for clustered

and P2P fog architectures further contributes to the field by providing a platform

for ongoing research and experimentation.

Future research should explore hybrid models that combine the strengths of mul-

tiple architectural approaches, integrating hierarchical, clustered, and P2P config-

urations to further optimise fog computing environments. Extending adaptive

middleware capabilities to incorporate AI-driven predictive resource allocation

140

141

strategies could enhance system responsiveness and efficiency. By addressing these

areas, future work can build upon this research to further refine and advance fog

computing paradigms.

9.1 Contributions

9.1.1 Middleware for Fog Computing

This research has demonstrated the importance of middleware as a key enabler of

efficient resource management in fog computing. The proposed middleware plat-

form addresses critical challenges such as heterogeneity, service discovery, resource

sharing, and the dynamic nature of fog environments. The middleware ensures in-

tegrated interaction between fog nodes and improves overall system performance

by providing a structured intermediary layer in multi-layered distributed system

architectures. The study further highlights the role of middleware in enabling

different architectural environmentshierarchical, clustered, and peer-to-peereach

of which offers distinct advantages depending on application requirements and

environmental conditions.

9.1.2 Middleware-enabled Clustered Fog Architecture

A significant contribution of this work is the development and evaluation of a clus-

tered fog architecture, modelled after the Internets Autonomous System concept.

This approach introduces interoperability across clusters and allows efficient load

balancing and resource scheduling both within and across clusters. The findings

demonstrate that inter- and intra-cluster resource management improves avail-

ability which increases reliability and reduces response time. Additionally, the

research emphasises the role of fog node proximity, showing that factors such

as inter-cluster distance, often overlooked in prior literature, play a role in load

balancing strategies at the fog layer. The clustered fog architecture, enabled by

142

middleware, effectively expands resource availability and improves application per-

formance in distributed environments.

9.1.3 Frameworks and Algorithms for Resource Management among

Fog Clusters

This research also presents novel frameworks and algorithms for resource discov-

ery, load balancing, and request handling within clustered and peer-to-peer fog

architectures. Unlike existing approaches, which focus on isolated resource man-

agement techniques, this study integrates these aspects within an adaptive mid-

dleware framework. The evaluation results highlight the benefits of middleware-

enabled resource pooling, which facilitates efficient request distribution and min-

imises queuing delays. These findings offer a comprehensive understanding of

resource management in fog computing and lay the foundation for future research

on hybrid approaches that further optimise system efficiency.

9.1.4 Middleware-enabled Peer-to-Peer Fog Architecture

Beyond clustering, this research explores the potential of peer-to-peer (P2P) archi-

tectures for fog computing, managed through middleware. The P2P model offers

significant advantages in terms of scalability and resource utilisation, particularly

in highly dynamic environments such as vehicular fog computing. By enabling

direct communication and resource sharing among fog nodes without relying on

a hierarchical structure, the middleware-enabled P2P approach minimises bottle-

necks, improves fault tolerance, and increases system responsiveness. The findings

highlight the importance of adaptive middleware in managing decentralised fog

environments, ensuring continuous service availability despite fluctuations in con-

nectivity and resource availability.

143

9.1.5 Simulation Tool

To support further advancements in fog computing research, this work extends

the FogNetSim++ simulation tool in OMNeT++ to include clustered and peer-

to-peer environments. This contribution provides a platform for researchers to

analyse and experiment with different fog computing architectures under various

conditions. By enabling simulation-based evaluations of middleware-enabled ar-

chitectures, this tool facilitates deeper insights into fog computing paradigms and

supports the development of future resource management strategies.

9.2 Final Remarks

In conclusion, this thesis has contributed to the advancement of fog computing

by proposing and evaluating a middleware-based approach to resource manage-

ment. The findings highlight the benefits of middleware in improving availability,

reliability, adaptiveness, and performance in fog environments. By integrating

clustering and peer-to-peer architectures, developing novel resource management

frameworks, and extending simulation tools, this research provides a comprehen-

sive foundation for future innovations in fog computing. The proposed middleware

framework paves the way for more resilient and efficient fog-based systems, ulti-

mately improving the reliability and responsiveness of applications in distributed

environments.

References

[1] M. Chui, M. Collins, and M. Patel, “The Internet of

Things: Catching up to an accelerating opportunity,” McK-

insey Company, Tech. Rep., 2021. [Online]. Available:

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/

iot-value-set-to-accelerate-through-2030-where-and-how-to-capture-it

[2] Statistica, “Volume of data/information created, captured, copied, and

consumed worldwide from 2010 to 2023, with forecasts from 2024 to

2028,” 2024. [Online]. Available: https://www.statista.com/statistics/

871513/worldwide-data-created/

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in Proceedings of the first edition of the MCC

workshop on Mobile cloud computing - MCC ’12. New York, New York,

USA: ACM Press, 2012, p. 13.

[4] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view of

cloud computing,” Communications of the ACM, vol. 53, no. 4, p. 50, apr

2010.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,

A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,

and M. Zaharia, “Above the Clouds: A Berkeley View of Cloud

Computing,” EECS Department, University of California, Berkeley,

144

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/iot-value-set-to-accelerate-through-2030-where-and-how-to-capture-it
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/iot-value-set-to-accelerate-through-2030-where-and-how-to-capture-it
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

References 145

Tech. Rep. UCB/EECS-2009-28, feb 2009. [Online]. Available: http:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[6] X. Li, X. Jiang, P. Garraghan, and Z. Wu, “Holistic energy and failure aware

workload scheduling in Cloud datacenters,” Future Generation Computer

Systems, vol. 78, no. 1, pp. 887–900, 2018.

[7] C. Doctorow, “Big data: Welcome to the petacentre,” Nature, vol. 455, no.

7209, pp. 16–21, sep 2008.

[8] A. Yassine, S. Singh, M. S. Hossain, and G. Muhammad, “IoT big data

analytics for smart homes with fog and cloud computing,” Future Generation

Computer Systems, vol. 91, pp. 563–573, feb 2019.

[9] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A.

Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel,

M. Muller, T. Elste, and M. Windisch, “Latency Critical IoT Applications in

5G: Perspective on the Design of Radio Interface and Network Architecture,”

IEEE Communications Magazine, vol. 55, no. 2, pp. 70–78, 2017.

[10] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A Plat-

form for Internet of Things and Analytics,” in Big Data and Internet of

Things: A Roadmap for Smart Environments, N. Bessis and C. Dobre, Eds.

Springer, Cham, 2014, pp. 169–186.

[11] A. Chougule, V. Chamola, A. Sam, F. R. Yu, and B. Sikdar, “A Com-

prehensive Review on Limitations of Autonomous Driving and Its Impact

on Accidents and Collisions,” IEEE Open Journal of Vehicular Technology,

vol. 5, no. October 2023, pp. 142–161, 2024.

[12] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,

A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric Com-

puting,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 5,

pp. 37–42, sep 2015.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

References 146

[13] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context

Aware Computing for The Internet of Things: A Survey,” IEEE Communi-

cations Surveys Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[14] W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen, “Internet

of vehicles in big data era,” IEEE/CAA Journal of Automatica Sinica, vol. 5,

no. 1, pp. 19–35, 2018.

[15] J. Daskal, “The un-territoriality of data,” Yale Law Journal, vol. 125, no. 2,

pp. 326–398, 2015.

[16] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: archi-

tecture, key technologies, applications and open issues,” Journal of Network

and Computer Applications, vol. 98, pp. 27–42, nov 2017.

[17] A. Sadri, A. Rahmani, M. Saberikamarposhti, and M. Hosseinzadeh, “Fog

data management: A vision, challenges, and future directions,” Journal of

Network and Computer Applications, vol. 174, 2021.

[18] M. GhobaeiArani, A. Souri, F. Safara, and M. Norouzi, “An efficient task

scheduling approach using mothflame optimization algorithm for cyber-

physical system applications in fog computing,” Transactions on Emerging

Telecommunications Technologies, vol. 31, no. 2, feb 2020.

[19] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and

P. A. Polakos, “A Comprehensive Survey on Fog Computing: State-of-the-

Art and Research Challenges,” IEEE Communications Surveys Tutorials,

vol. 20, no. 1, pp. 416–464, 2018.

[20] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang,

and R. Ranjan, “Fog Computing: Survey of Trends, Architectures, Require-

ments, and Research Directions,” IEEE Access, vol. 6, pp. 47 980–48 009,

aug 2018.

[21] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Cu-

rado, L. Villas, L. DaSilva, C. Lee, and O. Rana, “The Internet of Things,

References 147

Fog and Cloud continuum: Integration and challenges,” Internet of Things,

vol. 3-4, pp. 134–155, oct 2018.

[22] T. M. Mengistu and D. Che, “Survey and Taxonomy of Volunteer Comput-

ing,” ACM Computing Surveys, vol. 52, no. 3, pp. 1–35, may 2020.

[23] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “IoT Mid-

dleware: A Survey on Issues and Enabling Technologies,” IEEE Internet of

Things Journal, vol. 4, no. 1, pp. 1–20, 2017.

[24] A. Farahzadi, P. Shams, J. Rezazadeh, and R. Farahbakhsh, “Middleware

technologies for cloud of things: a survey,” Digital Communications and

Networks, vol. 4, no. 3, pp. 176–188, 2018.

[25] H. Samwini, M. Awais, and E. Pereira, “Middleware for Resource Sharing

in Fog Computing with IoT Applications,” in IEEE EUROCON 2023 - 20th

International Conference on Smart Technologies, no. May. IEEE, 2023, pp.

508–513.

[26] H. Samwini, M. Raza, E. Pereira, U. Khan, and M. Awais, “Critical analysis

of resource sharing and optimization in fog clustering,” in 2024 International

Conference on Emerging Trends in Smart Technologies (ICETST). Karachi,

Pakistan,: IEEE, oct 2024, pp. 1–6.

[27] K. Ashton and Others, “That internet of things’ thing,” RFID journal,

vol. 22, no. 7, pp. 97–114, 2009.

[28] International Telecommunication Union (ITU), “ITU Internet Report

2005: Internet of Things,” International Telecommunication Union

(ITU), Geneva, Switzerland, Tech. Rep., nov 2015. [Online]. Available:

www.itu.int/publications/bookshop/.

[29] S. B. Nath, H. Gupta, S. Chakraborty, and S. K. Ghosh, “A

Survey of Fog Computing and Communication: Current Researches

and Future Directions,” arXiv, no. April, apr 2018. [Online]. Available:

http://arxiv.org/abs/1804.04365

www.itu.int/publications/bookshop/.
http://arxiv.org/abs/1804.04365

References 148

[30] I. Bose and R. Pal, “Auto-ID: managing anything, anywhere, anytime in the

supply chain,” Communications of the ACM, vol. 48, no. 8, pp. 100–106, aug

2005.

[31] R.-I. Ciobanu, V. Cristea, C. Dobre, and F. Pop, “Big Data Platforms for

the Internet of Things,” in Big Data and Internet of Things: A Roadmap

for Smart Environments, N. Bessis and C. Dobre, Eds. Springer, Cham,

2014.

[32] R. Istepanian, A. Sungoor, A. Faisal, and N. Philip, “Internet of M-health

Things ’m-IOT’,” IET Seminar on Assisted Living 2011, 2011.

[33] Xi Chen, Jianming Liu, Xiangzhen Li, Limin Sun, and Yan Zhen, “Integra-

tion of IOT with smart grid,” in IET International Conference on Commu-

nication Technology and Application (ICCTA 2011), no. 1. IET, 2011, pp.

723–726.

[34] S. Muthuramalingam, A. Bharathi, S. Rakesh kumar, N. Gayathri, R. Sathi-

yaraj, and B. Balamurugan, “IoT Based Intelligent Transportation System

(IoT-ITS) for Global Perspective: A Case Study,” in Internet of Things

and Big Data Analytics for Smart Generation, V. E. Balas, V. K. Solanki,

R. Kumar, and M. Khari, Eds., 2019, ch. 13, pp. 279–300.

[35] A. Ordonez-Garcia, E. V. Nunez, M. Siller, and M. G. S. Cervantes, “IoT

system for agriculture: Web technologies in real time with the Middleware

paradigm,” in 2018 IEEE International Autumn Meeting on Power, Elec-

tronics and Computing (ROPEC). IEEE, nov 2018, pp. 1–4.

[36] S. Misra, C. Roy, and A. Mukherjee, Introduction to Industrial Internet of

Things and Industry 4.0. CRC Press, jan 2021.

[37] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying Fog Computing in

Industrial Internet of Things and Industry 4.0,” IEEE Transactions on In-

dustrial Informatics, vol. 14, no. 10, pp. 4674–4682, oct 2018.

References 149

[38] D. Evans, “The Internet of Things - How the Next Evolution of the Internet

Is Changing Everything,” Cisco Internet Business Solutions Group (IBSG),

San Jose, Tech. Rep., apr 2011.

[39] J. Landt, “The history of RFID,” IEEE Potentials, vol. 24, no. 4, pp. 8–11,

oct 2005.

[40] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787–2805, oct 2010.

[41] R. Yugha and S. Chithra, “A survey on technologies and security protocols:

Reference for future generation IoT,” Journal of Network and Computer

Applications, vol. 169, no. June, p. 102763, nov 2020.

[42] Telecommunication Standardization Sector of ITU, “Overview of the Inter-

net of Things,” Geneva, Switzerland, 2012.

[43] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”

IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243,

nov 2014.

[44] E. Borgia, “The Internet of Things vision: Key features, applications and

open issues,” Computer Communications, vol. 54, pp. 1–31, dec 2014.

[45] F. J. Corbató and V. A. Vyssotsky, “Introduction and overview of the multics

system,” in Proceedings of the November 30–December 1, 1965, fall joint

computer conference, part I on XX - AFIPS ’65 (Fall, part I). New York,

New York, USA: ACM Press, nov 1965, p. 185.

[46] Amazon, “Announcing Amazon Elastic Compute Cloud

(Amazon EC2) - beta,” aug 2006. [Online]. Avail-

able: https://aws.amazon.com/about-aws/whats-new/2006/08/24/

announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/

[47] G. Piro, M. Amadeo, G. Boggia, C. Campolo, L. A. Grieco, A. Molinaro,

and G. Ruggeri, “Gazing into the Crystal Ball: When the Future Internet

https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/

References 150

Meets the Mobile Clouds,” IEEE Transactions on Cloud Computing, vol. 7,

no. 1, pp. 210–223, jan 2019.

[48] P. M. Mell and T. Grance, “SP 800-145. The NIST Definition

of Cloud Computing,” National Institute of Standards Technology,

Gaithersburg, MD, United States, Tech. Rep., 2011. [Online]. Available:

https://dl.acm.org/citation.cfm?id=2206223

[49] S. S. Chauhan, E. S. Pilli, R. Joshi, G. Singh, and M. Govil, “Brokering

in interconnected cloud computing environments: A survey,” Journal of

Parallel and Distributed Computing, vol. 133, pp. 193–209, nov 2019.

[50] A. Barnawi, S. Sakr, W. Xiao, and A. Al-Barakati, “The views, measure-

ments and challenges of elasticity in the cloud: A review,” Computer Com-

munications, vol. 154, pp. 111–117, mar 2020.

[51] A. Fox, “The Potential of Cloud Computing : Opportunities and Challenges

Cost Associativity and Elasticity,” in 2010 US Frontiers of Engineering Sym-

posium, 2010, pp. 1–7.

[52] A. A. Khan and M. Zakarya, “Energy, performance and cost efficient cloud

datacentres: A survey,” Computer Science Review, vol. 40, p. 100390, may

2021.

[53] A. Singh and K. Chatterjee, “Cloud security issues and challenges: A sur-

vey,” Journal of Network and Computer Applications, vol. 79, pp. 88–115,

feb 2017.

[54] S. S. Gill, R. C. Arya, G. S. Wander, and R. Buyya, “Fog-Based Smart

Healthcare as a Big Data and Cloud Service for Heart Patients Using IoT,”

in Lecture Notes on Data Engineering and Communications Technologies.

Springer, 2019, vol. 26, pp. 1376–1383.

[55] N. Dhingra, “Challenges, Limitation and security issues on mobile comput-

ing,” International journal of current engineering and technology, vol. 4, pp.

3459–3462, 2014.

https://dl.acm.org/citation.cfm?id=2206223

References 151

[56] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE

Personal Communications, vol. 8, no. 4, pp. 10–17, 2001.

[57] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture

and Computation Offloading,” IEEE Communications Surveys and Tutori-

als, vol. 19, no. 3, pp. 1628–1656, 2017.

[58] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog Com-

puting for the Internet of Things,” ACM Transactions on Internet Technol-

ogy, vol. 19, no. 2, pp. 1–41, may 2019.

[59] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,

J. Kong, and J. P. Jue, “All one needs to know about fog computing and

related edge computing paradigms: A complete survey,” Journal of Systems

Architecture, vol. 98, pp. 289–330, sep 2019.

[60] S. Antipolis, “ETSI Multi-access Edge Computing starts

second phase and renews leadership team,” 2017.

[Online]. Available: https://www.etsi.org/newsroom/news/

1180-2017-03-news-etsi-multi-access-edge-computing-starts-second-phase-and-renews-leadership-team

[61] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H.

Abawajy, “Fog of Everything: Energy-Efficient Networked Computing Ar-

chitectures, Research Challenges, and a Case Study,” IEEE Access, vol. 5,

pp. 9882–9910, 2017.

[62] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “ENORM:

A Framework For Edge NOde Resource Management,” IEEE Transactions

on Services Computing, vol. 46, no. November, pp. 1–1, 2019.

[63] IEEE Communications Society, IEEE Std 1934-2018 : IEEE Standard for

Adoption of OpenFog Reference Architecture for Fog Computing., 1st ed.,

J. K. Zao, T. Zhang, and J. Zhou, Eds. New York: IEEE, 2018. [Online].

Available: https://ieeexplore.ieee.org/document/8423800

https://www.etsi.org/newsroom/news/1180-2017-03-news-etsi-multi-access-edge-computing-starts-second-phase-and-renews-leadership-team
https://www.etsi.org/newsroom/news/1180-2017-03-news-etsi-multi-access-edge-computing-starts-second-phase-and-renews-leadership-team
https://ieeexplore.ieee.org/document/8423800

References 152

[64] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia,

“Fog Computing: A Comprehensive Architectural Survey,” IEEE Access,

vol. 8, pp. 69 105–69 133, 2020.

[65] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. Goren, and C. Mahmoudi,

“Fog computing conceptual model,” National Institute of Standards and

Technology, Gaithersburg, MD, Tech. Rep., mar 2018.

[66] S. P. Singh, A. Nayyar, R. Kumar, and A. Sharma, “Fog computing: from

architecture to edge computing and big data processing,” The Journal of

Supercomputing, vol. 75, no. 4, pp. 2070–2105, apr 2019.

[67] S. Aggarwal and N. Kumar, “Fog Computing for 5G-Enabled Tactile Inter-

net: Research Issues, Challenges, and Future Research Directions,” Mobile

Networks and Applications, vol. 28, no. 2, pp. 690–717, apr 2023.

[68] A. Kumari, S. Tanwar, S. Tyagi, and N. Kumar, “Fog computing for Health-

care 4.0 environment: Opportunities and challenges,” Computers and Elec-

trical Engineering, vol. 72, pp. 1–13, 2018.

[69] Z. Rejiba, X. Masip-Bruin, and E. Maŕın-Tordera, “A Survey on Mobility-

Induced Service Migration in the Fog, Edge, and Related Computing

Paradigms,” ACM Computing Surveys, vol. 52, no. 5, pp. 1–33, sep 2020.

[70] F. Sharifi, A. Rasaii, A. Pasdar, S. Hessabi, and Y. C. Lee, “On the Effec-

tiveness of Fog Offloading in a Mobility-Aware Healthcare Environment,”

Digital, vol. 3, no. 4, pp. 300–318, dec 2023.

[71] C. A. R. L. Brennand, F. D. da Cunha, G. Maia, E. Cerqueira, A. A.

Loureiro, and L. A. Villas, “FOX: A traffic management system of computer-

based vehicles FOG,” in 2016 IEEE Symposium on Computers and Com-

munication (ISCC). Messina, Italy: IEEE, jun 2016, pp. 982–987.

[72] Y. Lai, F. Yang, L. Zhang, and Z. Lin, “Distributed Public Vehicle System

Based on Fog Nodes and Vehicular Sensing,” IEEE Access, vol. 6, pp. 22 011–

22 024, 2018.

References 153

[73] C. Huang, R. Lu, and K.-K. R. Choo, “Vehicular Fog Computing: Architec-

ture, Use Case, and Security and Forensic Challenges,” IEEE Communica-

tions Magazine, vol. 55, no. 11, pp. 105–111, nov 2017.

[74] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “OpenMote: Open-

Source Prototyping Platform for the Industrial IoT,” in Lecture Notes of the

Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering, LNICST, 2015, vol. 155, no. October, pp. 211–222.

[75] G. Caiza, M. Saeteros, W. Oñate, and M. V. Garcia, “Fog computing at

industrial level, architecture, latency, energy, and security: A review,” He-

liyon, vol. 6, no. 4, p. e03706, apr 2020.

[76] P. O’Donovan, C. Gallagher, K. Bruton, and D. T. O’Sullivan, “A fog com-

puting industrial cyber-physical system for embedded low-latency machine

learning Industry 4.0 applications,” Manufacturing Letters, vol. 15, pp. 139–

142, jan 2018.

[77] M. Dabrowska, “Power of predictive maintenance with IoT: Reducing down-

time and costs,” 2024.

[78] Y. K. Teoh, S. S. Gill, and A. K. Parlikad, “IoT and Fog-Computing-Based

Predictive Maintenance Model for Effective Asset Management in Industry

4.0 Using Machine Learning,” IEEE Internet of Things Journal, vol. 10,

no. 3, pp. 2087–2094, feb 2023.

[79] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-

Driven Intelligent Transportation Systems: A Survey,” IEEE Transactions

on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639, dec

2011.

[80] T. S. J. Darwish and K. Abu Bakar, “Fog Based Intelligent Transporta-

tion Big Data Analytics in The Internet of Vehicles Environment: Motiva-

tions, Architecture, Challenges, and Critical Issues,” IEEE Access, vol. 6,

pp. 15 679–15 701, 2018.

References 154

[81] BBC, “UK must tackle ’astonishing’ cost of congestion,” 2018. [Online].

Available: https://www.bbc.co.uk/news/uk-42948259

[82] EU-Mobility and Transport, “Transport in the European Union Current

Trends and Issues,” European Commission, Brussels, Tech. Rep., 2018.

[Online]. Available: https://ec.europa.eu/transport/sites/transport/files/

2018-transport-in-the-eu-current-trends-and-issues.pdf

[83] S. Eichler, “Performance Evaluation of the IEEE 802.11p WAVE Commu-

nication Standard,” in 2007 IEEE 66th Vehicular Technology Conference.

Baltimore, MD, USA: IEEE, sep 2007, pp. 2199–2203.

[84] O. Kaiwartya, A. H. Abdullah, Y. Cao, A. Altameem, M. Prasad, C.-T.

Lin, and X. Liu, “Internet of Vehicles: Motivation, Layered Architecture,

Network Model, Challenges, and Future Aspects,” IEEE Access, vol. 4, pp.

5356–5373, 2016.

[85] M. Sookhak, F. R. Yu, Y. He, H. Talebian, N. Sohrabi Safa, N. Zhao, M. K.

Khan, and N. Kumar, “Fog Vehicular Computing: Augmentation of Fog

Computing Using Vehicular Cloud Computing,” IEEE Vehicular Technology

Magazine, vol. 12, no. 3, pp. 55–64, sep 2017.

[86] Z. Ning, J. Huang, and X. Wang, “Vehicular Fog Computing: Enabling

Real-Time Traffic Management for Smart Cities,” IEEE Wireless Commu-

nications, vol. 26, no. 1, pp. 87–93, feb 2019.

[87] A. J. V. Neto, Z. Zhao, J. J. P. C. Rodrigues, H. B. Camboim, and T. Braun,

“Fog-Based Crime-Assistance in Smart IoT Transportation System,” IEEE

Access, vol. 6, pp. 11 101–11 111, 2018.

[88] E. E. Ali, L. Chew, and K. Y.-L. Yap, “Evolution and current status of

mhealth research: a systematic review,” BMJ Innovations, vol. 2, no. 1, pp.

33–40, jan 2016.

https://www.bbc.co.uk/news/uk-42948259
https://ec.europa.eu/transport/sites/transport/files/2018-transport-in-the-eu-current-trends-and-issues.pdf
https://ec.europa.eu/transport/sites/transport/files/2018-transport-in-the-eu-current-trends-and-issues.pdf

References 155

[89] B. T. Mi, X. Liang, and S. S. Zhang, “Internet of Things: A Survey on

Enabling Technologies, Protocols, and Applications,” IEEE Communication

Surveys and Tutorials, vol. 17, no. 4, pp. 2347–2376, 2018.

[90] ETSI, “TR 102 732 - V1.1.1 - Machine-to-Machine Communications

(M2M); Use Cases of M2M applications for eHealth,” European

Telecommunications Standards Institute, Tech. Rep., sep 2013. [Online].

Available: http://portal.etsi.org/chaircor/ETSI support.asp

[91] B. Woodward, MHealth: Fundamentals and Applications, R. S. Istepanian,

Ed. Hoboken, NJ, USA: Wiley, nov 2016.

[92] X. Wu, R. Dunne, Z. Yu, and W. Shi, “STREMS: A Smart Real-Time

Solution toward Enhancing EMS Prehospital Quality,” in 2017 IEEE/ACM

International Conference on Connected Health: Applications, Systems and

Engineering Technologies (CHASE). IEEE, jul 2017, pp. 365–372.

[93] E. Karavatselou, M.-A. Fengou, G. Mantas, and D. Lymberopoulos, “Profile

Management System in Ubiquitous Healthcare Cloud Computing Environ-

ment,” in Broadband Communications, Networks, and Systems, V. Sucasas,

G. Mantas, and S. Althunibat, Eds. Cham: Springer International Pub-

lishing, 2019, pp. 105–114.

[94] Z. Á. Mann, “Notions of architecture in fog computing,” Computing, vol.

103, no. 1, pp. 51–73, jan 2021.

[95] J. Wen, C. Ren, and A. K. Sangaiah, “Energy-Efficient Device-to-Device

Edge Computing Network: An Approach Offloading Both Traffic and Com-

putation,” IEEE Communications Magazine, vol. 56, no. 9, pp. 96–102, 2018.

[96] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A hierar-

chical distributed fog computing architecture for big data analysis in smart

cities,” in ACM International Conference Proceeding Series, vol. 07-09-Ocob.

Association for Computing Machinery, oct 2015.

http://portal.etsi.org/chaircor/ETSI_support.asp

References 156

[97] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,

“Fog Computing: Principles, Architectures, and Applications,” in Internet

of Things: Principles and Paradigms, R. Buyya and A. V. Dastjerdi, Eds.

Cambridge, Massachusetts, USA: Elsevier Inc., jan 2016, ch. 4, pp. 61–78.

[98] W. Zhang, Z. Zhang, and H.-C. Chao, “Cooperative Fog Computing for

Dealing with Big Data in the Internet of Vehicles: Architecture and Hier-

archical Resource Management,” IEEE Communications Magazine, vol. 55,

no. 12, pp. 60–67, dec 2017.

[99] V. Stantchev, A. Barnawi, S. Ghulam, J. Schubert, and G. Tamm, “Smart

Items, Fog and Cloud Computing as Enablers of Servitization in Healthcare,”

Sensors Transducers, vol. 185, no. 2, pp. 121–128, 2015.

[100] V. Kumar and R. Vidhyalakshmi, “Cloud Reliability,” in Reliability

Aspect of Cloud Computing Environment. Singapore: Springer Singapore,

2018, pp. 29–49. [Online]. Available: http://link.springer.com/10.1007/

978-981-13-3023-0 2

[101] B. Treynor, M. Dahlin, V. Rau, and B. Beyer, “The calculus of service

availability,” Communications of the ACM, vol. 60, no. 9, pp. 42–47, aug

2017.

[102] Y. Izrailevsky and C. Bell, “Cloud Reliability,” IEEE Cloud Computing,

vol. 5, no. 3, pp. 39–44, 2018.

[103] Y.-s. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud Service Reliability :

Modeling and Analysis,” 2010, pp. 1–17.

[104] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT gateway: Bridging

wireless sensor networks into Internet of Things,” Proceedings - IEEE/IFIP

International Conference on Embedded and Ubiquitous Computing, EUC

2010, pp. 347–352, 2010.

[105] M. Aazam, P. P. Hung, and E.-N. Huh, “Smart gateway based communica-

tion for cloud of things,” in 2014 IEEE Ninth International Conference on

http://link.springer.com/10.1007/978-981-13-3023-0_2
http://link.springer.com/10.1007/978-981-13-3023-0_2

References 157

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).

Barcelona, Spain: IEEE, apr 2014, pp. 1–6.

[106] M. Aazam and E.-N. Huh, “Fog Computing and Smart Gateway Based

Communication for Cloud of Things,” in 2014 International Conference on

Future Internet of Things and Cloud. Barcelona, Spain: IEEE, aug 2014,

pp. 464–470.

[107] M. Aazam, I. Khan, A. A. Alsaffar, and E.-N. Huh, “Cloud of Things: In-

tegrating Internet of Things and cloud computing and the issues involved,”

in Proceedings of 2014 11th International Bhurban Conference on Applied

Sciences Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January,

2014. IEEE, jan 2014, pp. 414–419.

[108] A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang,

and P. Liljeberg, “Exploiting smart e-Health gateways at the edge of health-

care Internet-of-Things: A fog computing approach,” Future Generation

Computer Systems, vol. 78, pp. 641–658, jan 2018.

[109] A. Carrega, M. Repetto, P. Gouvas, and A. Zafeiropoulos, “A Middleware

for Mobile Edge Computing,” IEEE Cloud Computing, vol. 4, no. 4, pp.

26–37, jul 2017.

[110] S. Nastic, S. Sehic, D.-H. Le, H.-L. Truong, and S. Dustdar, “Provisioning

Software-Defined IoT Cloud Systems,” in 2014 International Conference on

Future Internet of Things and Cloud. IEEE, aug 2014, pp. 288–295.

[111] M. Vogler, J. Schleicher, C. Inzinger, S. Nastic, S. Sehic, and S. Dustdar,

“LEONORE – Large-Scale Provisioning of Resource-Constrained IoT De-

ployments,” in 2015 IEEE Symposium on Service-Oriented System Engi-

neering, vol. 30. IEEE, mar 2015, pp. 78–87.

[112] S. Nastic, H.-L. Truong, and S. Dustdar, “A Middleware Infrastructure for

Utility-Based Provisioning of IoT Cloud Systems,” in 2016 IEEE/ACM Sym-

posium on Edge Computing (SEC). IEEE, oct 2016, pp. 28–40.

References 158

[113] C.-H. Hong and B. Varghese, “Resource Management in Fog/Edge Com-

puting: A Survey on Architectures, Infrastructure, and Algorithms,” ACM

Computing Surveys, vol. 52, no. 5, pp. 1–37, 2019.

[114] J. Clemente, M. Valero, J. Mohammadpour, X. Li, and W. Song, “Fog

computing middleware for distributed cooperative data analytics,” in 2017

IEEE Fog World Congress (FWC). IEEE, oct 2017, pp. 1–6.

[115] S. Agarwal, S. Yadav, and A. K. Yadav, “An Efficient Architecture and Algo-

rithm for Resource Provisioning in Fog Computing,” International Journal

of Information Engineering and Electronic Business, vol. 8, no. 1, pp. 48–61,

jan 2016.

[116] D. Kimovski, H. Ijaz, N. Saurabh, and R. Prodan, “Adaptive Nature-

Inspired Fog Architecture,” in 2018 IEEE 2nd International Conference on

Fog and Edge Computing (ICFEC). IEEE, may 2018, pp. 1–8.

[117] A. Brogi and S. Forti, “QoS-Aware Deployment of IoT Applications Through

the Fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1185–1192, oct

2017.

[118] L. Chen, J. Wu, X. Long, and Z. Zhang, “ENGINE:Cost Effective

Offloading in Mobile Edge Computing with Fog-Cloud Cooperation,” arXiv,

nov 2017. [Online]. Available: http://arxiv.org/abs/1711.01683

[119] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality

of Experience (QoE)-aware placement of applications in Fog computing en-

vironments,” Journal of Parallel and Distributed Computing, vol. 132, pp.

190–203, oct 2019.

[120] H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-Vladicescu, “Reliabil-

ity in the utility computing era: Towards reliable Fog computing,” in 2013

20th International Conference on Systems, Signals and Image Processing

(IWSSIP). IEEE, 2013, pp. 43–46.

http://arxiv.org/abs/1711.01683

References 159

[121] Y. F. Chen, D. H. Huang, C. F. Huang, and Y. K. Lin, “Reliability Eval-

uation for a Cloud Computer Network with Fog Computing,” Proceedings

- Companion of the 2020 IEEE 20th International Conference on Software

Quality, Reliability, and Security, QRS-C 2020, pp. 682–683, 2020.

[122] F. Popentiu-Vladicescu and G. Albeanu, “Software reliability in the fog com-

puting,” in 2017 International Conference on Innovations in Electrical En-

gineering and Computational Technologies (ICIEECT). IEEE, apr 2017,

pp. 1–4.

[123] K. Dantu, S. Y. Ko, and L. Ziarek, “RAINA: Reliability and Adaptability

in Android for Fog Computing,” IEEE Communications Magazine, vol. 55,

no. 4, pp. 41–45, apr 2017.

[124] M. Aazam and E.-N. Huh, “Fog Computing: The Cloud-IoT/IoE Middle-

ware Paradigm,” IEEE Potentials, vol. 35, no. 3, pp. 40–44, may 2016.

[125] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Adaptive Appli-

cation Configuration and Distribution in Mobile Cloudlet Middleware,” in

Lecture Notes of the Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering. Springer, Berlin, Heidelberg, nov 2013,

vol. 65 LNICST, pp. 178–191.

[126] J. Rodrigues, E. R. B. Marques, L. M. B. Lopes, and F. Silva, “Towards a

middleware for mobile edge-cloud applications,” in Proceedings of the 2nd

Workshop on Middleware for Edge Clouds Cloudlets - MECC ’17, vol. 6.

New York, New York, USA: ACM Press, dec 2017, pp. 1–6.

[127] G. Orsini, D. Bade, and W. Lamersdorf, “Computing at the Mobile

Edge: Designing Elastic Android Applications for Computation Offloading,”

in 2015 8th IFIP Wireless and Mobile Networking Conference (WMNC).

IEEE, oct 2015, pp. 112–119.

[128] ——, “CloudAware: A Context-Adaptive Middleware for Mobile Edge and

Cloud Computing Applications,” in 2016 IEEE 1st International Workshops

References 160

on Foundations and Applications of Self* Systems (FAS*W). IEEE, sep

2016, pp. 216–221.

[129] N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-Molnar, and S. Mah-

moud, “SmartCityWare: A Service-Oriented Middleware for Cloud and Fog

Enabled Smart City Services,” IEEE Access, vol. 5, pp. 17 576–17 588, 2017.

[130] N. Mohamed, S. Lazarova-Molnar, I. Jawhar, and J. Al-Jaroodi, “Towards

Service-Oriented Middleware for Fog and Cloud Integrated Cyber Physical

Systems,” in 2017 IEEE 37th International Conference on Distributed Com-

puting Systems Workshops (ICDCSW). IEEE, jun 2017, pp. 67–74.

[131] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and A. Zanni,

“A survey on fog computing for the Internet of Things,” Pervasive and

Mobile Computing, vol. 52, pp. 71–99, jan 2019.

[132] B. Mukherjee, S. Wang, W. Lu, R. L. Neupane, D. Dunn, Y. Ren, Q. Su,

and P. Calyam, “Flexible IoT security middleware for end-to-end cloudfog

communication,” Future Generation Computer Systems, vol. 87, pp. 688–

703, oct 2018.

[133] A. M. Elmisery, S. Rho, and D. Botvich, “A Fog Based Middleware for Auto-

mated Compliance With OECD Privacy Principles in Internet of Healthcare

Things,” IEEE Access, vol. 4, pp. 8418–8441, 2016.

[134] Y. Nakamura, H. Suwa, Y. Arakawa, H. Yamaguchi, and K. Yasumoto,

“Design and Implementation of Middleware for IoT Devices toward Real-

Time Flow Processing,” in 2016 IEEE 36th International Conference on

Distributed Computing Systems Workshops (ICDCSW). IEEE, jun 2016,

pp. 162–167.

[135] P. Bellavista, L. Foschini, N. Ghiselli, and A. Reale, “MQTT-based Mid-

dleware for Container Support in Fog Computing Environments,” in 2019

IEEE Symposium on Computers and Communications (ISCC). IEEE, jun

2019, pp. 1–7.

References 161

[136] M. Pore, V. Chakati, A. Banerjee, and S. K. S. Gupta, “Middleware for

Fog and Edge Computing: Design Issues,” in Fog and Edge Computing:

Principles and Paradigms, R. Buyya and N. S. Srirama, Eds. Hoboken,

NJ, USA: John Wiley Sons, Inc., jan 2019, pp. 123–144.

[137] J. Al-Jaroodi, N. Mohamed, I. Jawhar, and S. Mahmoud, “CoTWare: A

Cloud of Things Middleware,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems Workshops (ICDCSW). IEEE, jun 2017,

pp. 214–219.

[138] S. Shekhar, A. Chhokra, H. Sun, A. Gokhale, A. Dubey, and

X. Koutsoukos, “URMILA: A Performance and Mobility-Aware Fog/Edge

Resource Management Middleware,” in 2019 IEEE 22nd International

Symposium on Real-Time Distributed Computing (ISORC). Valencia,

Spain: IEEE, may 2019, pp. 118–125. [Online]. Available: https:

//ieeexplore.ieee.org/document/8759356/

[139] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems:

Concepts and Design, 5th ed. USA: Addison-Wesley Publishing Company,

2011.

[140] B. Varghese and R. Buyya, “Next generation cloud computing: New trends

and research directions,” Future Generation Computer Systems, vol. 79, pp.

849–861, 2018.

[141] Q. Xu and J. Zhang, “PiFogBed: A Fog Computing Testbed Based on Rasp-

berry Pi,” 2019 IEEE 38th International Performance Computing and Com-

munications Conference, IPCCC 2019, 2019.

[142] International Organization for Standardization, International Standard

ISO/IEC/ IEEE 24765. ISO/IEC/ IEEE, 2017, vol. 2017. [Online].

Available: https://www.iso.org/standard/71952.html

[143] M. Fahimullah, G. Philippe, S. Ahvar, and M. Trocan, “Simulation Tools for

Fog Computing: A Comparative Analysis,” Sensors, vol. 23, no. 7, p. 3492,

mar 2023.

https://ieeexplore.ieee.org/document/8759356/
https://ieeexplore.ieee.org/document/8759356/
https://www.iso.org/standard/71952.html

References 162

[144] R. Jain, The art of computer systems performance analysis: techniques for

experimental design, measurement, simulation, and modeling. john wiley

sons, 1990.

[145] J. Singh, P. Singh, and S. S. Gill, “Fog computing: A taxonomy, systematic

review, current trends and research challenges,” Journal of Parallel and

Distributed Computing, vol. 157, pp. 56–85, nov 2021. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0743731521001349

[146] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource Management

Approaches in Fog Computing: a Comprehensive Review,” Journal of Grid

Computing, vol. 18, no. 1, pp. 1–42, mar 2020.

[147] M. Barcellos, G. Facchini, and H. Muhammad, “Bridging the Gap between

Simulation and Experimental Evaluation in Computer Networks,” in 39th

Annual Simulation Symposium (ANSS’06), vol. 2006. IEEE, 2006, pp. 286–

293.

[148] S. Fernandes, Performance Evaluation for Network Services, Systems and

Protocols. Cham: Springer International Publishing, 2017.

[149] A. A. T. R. Coutinho, E. O. Carneiro, and F. Greve, “Simulation and Mod-

eling Tools for Fog Computing,” in Fog Computing: Concepts, Frameworks,

and Applications. Boca Raton: Chapman and Hall/CRC, may 2022, pp.

51–84.

[150] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A

toolkit for modeling and simulation of resource management techniques in

the Internet of Things, Edge and Fog computing environments,” Software:

Practice and Experience, vol. 47, no. 9, pp. 1275–1296, sep 2017.

[151] M. M. Lopes, W. A. Higashino, M. A. Capretz, and L. F. Bittencourt, “Myi-

FogSim,” in Companion Proceedings of the10th International Conference on

Utility and Cloud Computing. New York, NY, USA: ACM, dec 2017, pp.

47–52.

https://linkinghub.elsevier.com/retrieve/pii/S0743731521001349

References 163

[152] T. Qayyum, A. W. Malik, M. A. Khan Khattak, O. Khalid, and S. U. Khan,

“FogNetSim++: A Toolkit for Modeling and Simulation of Distributed Fog

Environment,” IEEE Access, vol. 6, pp. 63 570–63 583, 2018.

[153] I. Lera, C. Guerrero, and C. Juiz, “YAFS: A Simulator for IoT Scenarios in

Fog Computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.

[154] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins, E. Madeira,

E. Mingozzi, O. Rana, and L. F. Bittencourt, “MobFogSim: Simulation of

mobility and migration for fog computing,” Simulation Modelling Practice

and Theory, vol. 101, no. December 2019, 2020.

[155] S. V. Margariti, V. V. Dimakopoulos, and G. Tsoumanis, “Modeling and

simulation tools for fog computing-A comprehensive survey from a cost per-

spective,” Future Internet, vol. 12, no. 5, 2020.

[156] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,

“CloudSim: a toolkit for modeling and simulation of cloud computing en-

vironments and evaluation of resource provisioning algorithms,” Software:

Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[157] S. J. Mullender, “Distributed Systems Management in Wide-Area Net-

works,” in NGI-SION 1984 Informatica Symposium 1984. Nederlands

Genootschap voor Informatica (NGI), apr 1984, pp. 415–424.

[158] T. Dey, S. Bera, A. Mukherjee, and D. De, “Resource Management in

Distributed Computing,” in Resource Management in Distributed Systems,

A. Mukherjee, D. De, and R. Buyya, Eds. Springer, 2024, pp. 1–15.

[Online]. Available: https://link.springer.com/10.1007/978-981-97-2644-8 1

[159] A. Goscinski and M. Bearman, “Resource management in large distributed

systems,” Operating Systems Review (ACM), vol. 24, no. 4, pp. 7–25, 1990.

[160] I. Martinez, A. S. Hafid, and A. Jarray, “Design, Resource Management,

and Evaluation of Fog Computing Systems: A Survey,” IEEE Internet of

Things Journal, vol. 8, no. 4, pp. 2494–2516, feb 2021.

https://link.springer.com/10.1007/978-981-97-2644-8_1

References 164

[161] M. Kaur and R. Aron, “A systematic study of load balancing approaches in

the fog computing environment,” The Journal of Supercomputing, vol. 77,

no. 8, pp. 9202–9247, aug 2021.

[162] M. Bendechache, S. Svorobej, P. Takako Endo, and T. Lynn, “Simulating

Resource Management across the Cloud-to-Thing Continuum: A Survey and

Future Directions,” Future Internet, vol. 12, no. 6, p. 95, may 2020.

[163] A. Mijuskovic, A. Chiumento, R. Bemthuis, A. Aldea, and P. Havinga, “Re-

source Management Techniques for Cloud/Fog and Edge Computing: An

Evaluation Framework and Classification,” Sensors, vol. 21, no. 5, p. 1832,

mar 2021.

[164] M. Fahimullah, S. Ahvar, and M. Trocan, “A Review of Resource Man-

agement in Fog Computing: Machine Learning Perspective,” pp. 1–15, sep

2022.

[165] P. Kansal, M. Kumar, and O. P. Verma, “Classification of resource man-

agement approaches in fog/edge paradigm and future research prospects:

a systematic review,” The Journal of Supercomputing, vol. 78, no. 11, pp.

13 145–13 204, jul 2022.

[166] D. Alsadie, “Resource Management Strategies in Fog Computing

Environment-A Comprehensive Review,” International Journal of Computer

Science and Network Security, vol. 22, no. 4, pp. 310–328, 2022.

[167] A. Mukherjee, D. De, and R. Buyya, “Cloud Computing Resource Man-

agement,” in Resource Management in Distributed Systems, A. Mukherjee,

D. De, and R. Buyya, Eds., 2024, pp. 17–37.

[168] M. R. Alizadeh, V. Khajehvand, A. M. Rahmani, and E. Akbari, “Task

scheduling approaches in fog computing: A systematic review,” Interna-

tional Journal of Communication Systems, vol. 33, no. 16, nov 2020.

References 165

[169] N. Alshammari, S. S. Gill, H. Pervaiz, Q. Ni, and H. Ahmed, “Resource

Scheduling in Integrated IoT and Fog Computing Environments: A Taxon-

omy, Survey and Future Directions,” in Resource Management in Distributed

Systems, A. Mukherjee, D. De, and R. Buyya, Eds. Springer, 2024, pp. 63–

77.

[170] A. Bukhari, F. K. Hussain, and O. K. Hussain, “Fog node discovery and se-

lection: A Systematic literature review,” Future Generation Computer Sys-

tems, vol. 135, pp. 114–128, 2022.

[171] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud com-

puting: A big picture,” Journal of King Saud University - Computer and

Information Sciences, vol. 32, no. 2, pp. 149–158, feb 2020.

[172] M. H. Kashani and E. Mahdipour, “Load Balancing Algorithms in Fog Com-

puting,” IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 1505–

1521, 2023.

[173] B. Costa, J. Bachiega, L. R. de Carvalho, and A. P. F. Araujo, “Orches-

tration in Fog Computing: A Comprehensive Survey,” ACM Computing

Surveys, vol. 55, no. 2, pp. 1–34, feb 2023.

[174] J. Gedeon, S. Zengerle, S. Alles, F. Brandherm, and M. Muhlhauser, “Sun-

stone: Navigating the Way Through the Fog,” in 2020 IEEE 4th Interna-

tional Conference on Fog and Edge Computing (ICFEC). IEEE, may 2020,

pp. 49–58.

[175] G. S. Blair, G. Coulson, and P. Grace, “Research directions in reflective

middleware,” in Proceedings of the 3rd workshop on Adaptive and reflective

middleware -. New York, New York, USA: ACM Press, 2004, pp. 262–267.

[176] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for Reflective

Middleware,” Communications of the ACM, vol. 45, no. 6, pp. 33–38, 2002.

[177] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,

J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka, “On Patterns for

References 166

Decentralized Control in Self-Adaptive Systems,” in Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2013, vol. 7475 LNCS, pp. 76–107.

[178] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and Analyzing

MAPE-K Feedback Loops for Self-Adaptation,” in 2015 IEEE/ACM 10th

International Symposium on Software Engineering for Adaptive and Self-

Managing Systems. IEEE, may 2015, pp. 13–23.

[179] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Comput-

ing 360-degree compared,” Grid Computing Environments Workshop, GCE

2008, 2008.

[180] A. Bertrand, “Distributed Signal Processing for Wireless EEG Sensor Net-

works,” IEEE Transactions on Neural Systems and Rehabilitation Engineer-

ing, vol. 23, no. 6, pp. 923–935, 2015.

[181] L. Hellstrom-Westas, I. Rosen, and N. W. Svenningsen, “Predictive value

of early continuous amplitude integrated EEG recordings on outcome after

severe birth asphyxia in full term infants.” Archives of Disease in Childhood

- Fetal and Neonatal Edition, vol. 72, no. 1, pp. F34–F38, jan 1995. [Online].

Available: https://fn.bmj.com/lookup/doi/10.1136/fn.72.1.F34

[182] A. Delorme, “EEG is better left alone,” Scientific Reports, vol. 13, no. 1, p.

2372, feb 2023.

[183] D. RAHBARI and M. NICKRAY, “Low-latency and energy-efficient

scheduling in fog-based IoT applications,” TURKISH JOURNAL OF

ELECTRICAL ENGINEERING COMPUTER SCIENCES, vol. 27, no. 2,

pp. 1406–1427, mar 2019. [Online]. Available: http://online.journals.

tubitak.gov.tr/openDoiPdf.htm?mKodu=elk-1810-47

[184] M. Dadashi Gavaber and A. Rajabzadeh, “MFP: an approach to delay

and energy-efficient module placement in IoT applications based on

multi-fog,” Journal of Ambient Intelligence and Humanized Computing,

https://fn.bmj.com/lookup/doi/10.1136/fn.72.1.F34
http://online.journals.tubitak.gov.tr/openDoiPdf.htm?mKodu=elk-1810-47
http://online.journals.tubitak.gov.tr/openDoiPdf.htm?mKodu=elk-1810-47

References 167

vol. 12, no. 7, pp. 7965–7981, 2021. [Online]. Available: https:

//doi.org/10.1007/s12652-020-02525-7

[185] S. R. Hassan, I. Ahmad, S. Ahmad, A. Alfaify, and M. Shafiq, “Remote Pain

Monitoring Using Fog Computing for e-Healthcare: An Efficient Architec-

ture,” Sensors, vol. 20, no. 22, p. 6574, nov 2020.

[186] S. Vanneste, J. de Hoog, T. Huybrechts, S. Bosmans, R. Eyckerman,

M. Sharif, S. Mercelis, and P. Hellinckx, “Distributed uniform streaming

framework: An elastic fog computing platform for event stream processing

and platform transparency,” Future Internet, vol. 11, no. 7, 2019.

[187] J. Oueis, E. C. Strinati, S. Sardellitti, and S. Barbarossa, “Small Cell Clus-

tering for Efficient Distributed Fog Computing: A Multi-User Case,” in 2015

IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), no. VOL.

IEEE, sep 2015, pp. 1–5.

[188] V. B. Martins, D. D. J. de Macedo, L. Pioli, and R. Immich, “A Cluster

Formation Algorithm for Fog Architectures Based on Mobility Parameters

at a Geographically LAN Perspective,” in Lecture Notes in Networks and

Systems, 2023, vol. 571 LNNS, pp. 25–36.

[189] E. Ghaferi, R. Malekhosseini, F. Rad, and K. Bagherifard, “A clustering

method for locating services based on fog computing for the internet of

things,” The Journal of Supercomputing, vol. 78, no. 11, pp. 13 756–13 779,

jul 2022.

[190] A. Asensio, X. Masip-Bruin, R. Durán, I. de Miguel, G. Ren, S. Daijavad,

and A. Jukan, “Designing an efficient clustering strategy for combined Fog-

to-Cloud scenarios,” Future Generation Computer Systems, vol. 109, pp.

392–406, aug 2020.

[191] T. Hosfeld, F. Metzger, and P. E. Heegaard, “Traffic modeling for aggre-

gated periodic IoT data,” in 2018 21st Conference on Innovation in Clouds,

Internet and Networks and Workshops (ICIN). IEEE, feb 2018, pp. 1–8.

https://doi.org/10.1007/s12652-020-02525-7
https://doi.org/10.1007/s12652-020-02525-7

References 168

[192] L. Xing, “Reliability in Internet of Things: Current Status and Future Per-

spectives,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6704–6721,

aug 2020.

[193] D. Charântola, A. C. Mestre, R. Zane, and L. F. Bittencourt, “Component-

based Scheduling for Fog Computing,” in Proceedings of the 12th

IEEE/ACM International Conference on Utility and Cloud Computing Com-

panion - UCC ’19 Companion. New York, New York, USA: ACM Press,

2019, pp. 3–8.

[194] M. Peixoto, T. Genez, and L. F. Bittencourt, “Hierarchical Scheduling Mech-

anisms in Multi-Level Fog Computing,” IEEE Transactions on Services

Computing, vol. XX, no. X, pp. 1–1, 2021.

[195] X. Shen, H. Yu, J. Buford, and M. Akon, Eds., Handbook of Peer-to-

Peer Networking. Boston, MA: Springer US, 2010. [Online]. Available:

https://link.springer.com/10.1007/978-0-387-09751-0

[196] D. Stutzbach and R. Rejaie, “Characterization of P2P Systems,” in Hand-

book of Peer-to-Peer Networking. Boston, MA: Springer US, 2010, pp.

1253–1276.

[197] M. Aazam, S. Zeadally, and K. A. Harras, “Fog Computing Architecture,

Evaluation, and Future Research Directions,” IEEE Communications Mag-

azine, vol. 56, no. 5, pp. 46–52, 2018.

[198] D. Wischik, M. Handley, and M. B. Braun, “The resource pooling principle,”

ACM SIGCOMM Computer Communication Review, vol. 38, no. 5, pp. 47–

52, sep 2008.

[199] M. Al-Khafajiy, T. Baker, A. Waraich, O. Alfandi, and A. Hussien, “En-

abling high performance fog computing through fog-2-fog coordination

model,” Proceedings of IEEE/ACS International Conference on Computer

Systems and Applications, AICCSA, vol. 2019-Novem, 2019.

https://link.springer.com/10.1007/978-0-387-09751-0

References 169

[200] K. M. S, N. Sadashiv, and D. K. S. M, “Load Balancing in Fog Computing: A

Detailed Survey,” International Journal of Computing and Digital Systems,

vol. 13, no. 1, pp. 729–750, apr 2023.

[201] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog Computing:

Focusing on Mobile Users at the Edge,” arXiv preprint arXiv:1502.01815,

feb 2015.

[202] M. Zghaibeh, K. G. Anagnostakis, and F. C. Harmantzis, “The Behavior

of Free Riders in Bit Torrent Networks,” in Handbook of Peer-to-Peer Net-

working. Boston, MA: Springer US, 2010, pp. 1207–1230.

[203] D. A. G. Manzato and N. L. S. da Fonseca, “Incentive Mechanisms for Coop-

eration in Peer-to-Peer Networks,” in Handbook of Peer-to-Peer Networking,

X. Shen, H. Yu, J. Buford, and M. Akon, Eds. Boston, MA: Springer US,

2010, pp. 631–660.

	Declaration
	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	List of Publications
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Aims and Objectives
	1.4 Contributions
	1.5 Thesis Overview

	2 Background and Related Work
	2.1 Internet of Things (IoT)
	2.2 Cloud Computing
	2.3 A Brief Historical Perspective
	2.4 Fog Computing
	2.4.1 Fog Computing Features
	2.4.2 Fog Applications
	2.4.3 Fog Architectures

	2.5 Reliability
	2.6 Middleware
	2.6.1 Key Middleware Challenges in Fog Computing

	2.7 Related Work
	2.7.1 Resource Management in Fog Computing
	2.7.2 Reliability in Fog Computing
	2.7.3 Fog Middleware
	2.7.4 Research Gaps

	2.8 Summary

	3 Research Design
	3.1 Research Approach
	3.2 Feature Analysis and Selection
	3.3 Middleware Approach to Fog Resource Management
	3.4 Design and Development of Middleware Features
	3.5 Evaluation Metrics and Results
	3.6 Rationale for Evaluation Approach
	3.6.1 Simulation Tools for Fog Computing
	3.6.2 Simulation Environment

	3.7 Summary

	4 Middleware for Fog Resource Management
	4.1 Review of Fog Resource Management
	4.1.1 Resource Management Tasks

	4.2 Middleware Framework Requirements
	4.2.1 Transparency
	4.2.2 Adaptability
	4.2.3 Interoperability
	4.2.4 Context-awareness

	4.3 Middleware Features
	4.4 Middleware Architecture
	4.4.1 Communication Layer
	4.4.2 Management Layer
	4.4.3 Services Layer

	4.5 Summary

	5 Transparent Task Processing with Middleware in Fog Computing
	5.1 Problem Description
	5.2 Proposed Solution
	5.3 Case Study: Remote EEG Monitoring
	5.4 Results and Discussion
	5.4.1 Response Time
	5.4.2 Network Usage
	5.4.3 Energy Consumed

	5.5 Conclusion

	6 Middleware-enabled Cluster Interoperability
	6.1 Clustering in Fog Computing
	6.2 Problem Description
	6.2.1 Core Challenges
	6.2.2 Illustrative Scenario
	6.2.3 Research Gap

	6.3 System Model
	6.3.1 IoT/User Layer
	6.3.2 Cloud Layer
	6.3.3 Fog Layer

	6.4 Evaluation and Results
	6.4.1 Inter-cluster Resource Sharing
	6.4.2 Scheduling

	6.5 Conclusion

	7 Middleware-enabled Fog Peer-to-Peer Model
	7.1 Problem Statement
	7.1.1 Limitations of Hierarchical Fog Architectures
	7.1.2 Illustrative Scenario
	7.1.3 The Need for a Decentralised Approach

	7.2 Proposed Model
	7.3 Cluster-Based Architecture
	7.4 Peer-to-Peer Architecture
	7.4.1 Peer Bootstrapping
	7.4.2 Request Handling
	7.4.3 Peer Connection Management

	7.5 Evaluation
	7.6 Analysis of Results
	7.7 Conclusion

	8 Discussion and Future Directions
	8.1 Availability and Reliability
	8.2 Adaptiveness and Distributed Architecture
	8.3 Factors Contributing to Performance
	8.4 Comparative Analysis with Existing Middleware Solutions
	8.4.1 Key Differentiators
	8.4.2 Limitations and Trade-offs
	8.4.3 Optimal Use Scenarios

	8.5 Future Directions

	9 Conclusion
	9.1 Contributions
	9.1.1 Middleware for Fog Computing
	9.1.2 Middleware-enabled Clustered Fog Architecture
	9.1.3 Frameworks and Algorithms for Resource Management among Fog Clusters
	9.1.4 Middleware-enabled Peer-to-Peer Fog Architecture
	9.1.5 Simulation Tool

	9.2 Final Remarks

	References

