TY - JOUR
T1 - UV-C-induced DNA damage leads to p53-dependent nuclear trafficking of PML
AU - Seker, H
AU - RUBBI, CARLOS
AU - Linke, SP
AU - Bowman, ED
AU - Garfield, S
AU - Hansen, L
AU - Borden, KL
AU - Milner, J
AU - Harris, CC
PY - 2003/3/18
Y1 - 2003/3/18
N2 - The promyelocytic leukemia protein (PML) is a nuclear phosphoprotein that localizes to distinct domains in the nucleus, described as PML nuclear bodies (PML-NBs). Recent findings indicate that PML regulates the p53 response to oncogenic signals. Here, we define a p53-dependent role for PML in response to DNA damage. We exposed cells to ultraviolet light (UV-C) and imaged the nuclear distribution of PML, p53, and the BLM helicase by confocal microscopy. After DNA damage, PML partially relocated out of the PML-NBs, and colocalized with BLM and p53 at sites of DNA repair. In addition, using the isogenic HCT116 cell lines (p53+/+ and −/−), we show that the redistribution of PML was dependent on functional p53. Western analysis revealed that the level of PML protein remained unaltered after UV-C treatment. These results are consistent with the hypothesis that PML, in conjunction with p53 and BLM, contributes to the cellular response to UV-C-induced DNA damage and its repair.
AB - The promyelocytic leukemia protein (PML) is a nuclear phosphoprotein that localizes to distinct domains in the nucleus, described as PML nuclear bodies (PML-NBs). Recent findings indicate that PML regulates the p53 response to oncogenic signals. Here, we define a p53-dependent role for PML in response to DNA damage. We exposed cells to ultraviolet light (UV-C) and imaged the nuclear distribution of PML, p53, and the BLM helicase by confocal microscopy. After DNA damage, PML partially relocated out of the PML-NBs, and colocalized with BLM and p53 at sites of DNA repair. In addition, using the isogenic HCT116 cell lines (p53+/+ and −/−), we show that the redistribution of PML was dependent on functional p53. Western analysis revealed that the level of PML protein remained unaltered after UV-C treatment. These results are consistent with the hypothesis that PML, in conjunction with p53 and BLM, contributes to the cellular response to UV-C-induced DNA damage and its repair.
M3 - Article (journal)
SN - 0950-9232
VL - 22
SP - 1620
EP - 1628
JO - Oncogene
JF - Oncogene
ER -