The Presence of Background Noise Extends the Competitor Space in Native and Non‐Native Spoken‐Word Recognition: Insights from Computational Modeling

Themis Karaminis, Florian Hintz, Odette Scharenborg

Research output: Contribution to journalArticle (journal)peer-review

Abstract

Oral communication often takes place in noisy environments, which challenge spoken-word recognition. Previous research has suggested that the presence of background noise extends the number of candidate words competing with the target word for recognition and that this extension affects the time course and accuracy of spoken-word recognition. In this study, we further investigated the temporal dynamics of competition processes in the presence of background noise, and how these vary in listeners with different language proficiency (i.e., native and non-native) using computational modeling. We developed ListenIN (Listen-In-Noise), a neural-network model based on an autoencoder architecture, which learns to map phonological forms onto meanings in two languages and simulates native and non-native spoken-word comprehension. We also examined the model’s activation states during online spoken-word recognition. These analyses demonstrated that the presence of background noise increases the number of competitor words, which are engaged in phonological competition and that this happens in similar ways intra and interlinguistically and in native and non-native listening. Taken together, our results support accounts positing a “many-additional-competitors scenario” for the effects of noise on spoken-word recognition.
Original languageEnglish
JournalCognitive Science
Volume46
Issue number2
Early online date21 Feb 2022
DOIs
Publication statusE-pub ahead of print - 21 Feb 2022

Keywords

  • Artificial Intelligence
  • Cognitive Neuroscience
  • Experimental and Cognitive Psychology

Fingerprint

Dive into the research topics of 'The Presence of Background Noise Extends the Competitor Space in Native and Non‐Native Spoken‐Word Recognition: Insights from Computational Modeling'. Together they form a unique fingerprint.

Cite this