Abstract
Context:
Recently, superoxygenated-water beverages have emerged as a new purported ergogenic substance.
Purpose:
This study aimed to determine the effects of superoxygenated water on submaximal endurance performance.
Methods:
Eleven active male subjects, VO2max 52.6 ± 4.8 mL · kg−1 · min−1, height 180.0 ± 2.0 cm, weight 76.0 ± 7.0 kg, age 24 ± 1.0 y (mean ± SD), completed a 45-min cycle-ergometry exercise test at 70% of their previously predicted maximal power output with a 10-min rest period, followed by a 15-min time trial (TT). Thirty minutes before the exercise test subjects consumed 15 mL of either superoxygenated water (E) or placebo (P; water mixed with low-chlorine solution). Subjects then completed the test again a week later for the other condition (double-blind, randomized). The physiological variables measured during exercise were VO2, VCO2, respiratory-exchange ratio (RER), VE, PO2, PCO2, blood lactate (bLa–), and heart rate (HR). Mean distance covered and the average power output for the 15-min TT were also measured as performance indicators.
Results:
There were no significant differences in VO2, VCO2, RER, VE, bLa−, PO2, and HR (P > .05) during the exercise tests. Neither were there any significant improvements in the total distance covered (P 9.01 ± 0.74 km vs E 8.96 ± 0.68 km, P > .05) or the average power output (P 186.7 ± 35.8 W vs E 179.0 ± 25.9 W, P > .05) during the 15-min TT.
Conclusion:
Based on these results the authors conclude that consuming 15 mL of superoxygenated water does not enhance submaximal or maximal TT cycling performance.
Recently, superoxygenated-water beverages have emerged as a new purported ergogenic substance.
Purpose:
This study aimed to determine the effects of superoxygenated water on submaximal endurance performance.
Methods:
Eleven active male subjects, VO2max 52.6 ± 4.8 mL · kg−1 · min−1, height 180.0 ± 2.0 cm, weight 76.0 ± 7.0 kg, age 24 ± 1.0 y (mean ± SD), completed a 45-min cycle-ergometry exercise test at 70% of their previously predicted maximal power output with a 10-min rest period, followed by a 15-min time trial (TT). Thirty minutes before the exercise test subjects consumed 15 mL of either superoxygenated water (E) or placebo (P; water mixed with low-chlorine solution). Subjects then completed the test again a week later for the other condition (double-blind, randomized). The physiological variables measured during exercise were VO2, VCO2, respiratory-exchange ratio (RER), VE, PO2, PCO2, blood lactate (bLa–), and heart rate (HR). Mean distance covered and the average power output for the 15-min TT were also measured as performance indicators.
Results:
There were no significant differences in VO2, VCO2, RER, VE, bLa−, PO2, and HR (P > .05) during the exercise tests. Neither were there any significant improvements in the total distance covered (P 9.01 ± 0.74 km vs E 8.96 ± 0.68 km, P > .05) or the average power output (P 186.7 ± 35.8 W vs E 179.0 ± 25.9 W, P > .05) during the 15-min TT.
Conclusion:
Based on these results the authors conclude that consuming 15 mL of superoxygenated water does not enhance submaximal or maximal TT cycling performance.
Original language | English |
---|---|
Pages (from-to) | 377-385 |
Journal | International Journal of Sports Physiology and Performance |
Volume | 2 |
Issue number | 4 |
DOIs | |
Publication status | Published - 5 May 2007 |
Keywords
- exercise
- supplements
- ergogenic aids
- blood lactate