TY - JOUR
T1 - Plant, soil and microbial controls on grassland diversity restoration
T2 - a long-term, multi-site mesocosm experiment
AU - Fry, Ellen L.
AU - Pilgrim, Emma S.
AU - Tallowin, Jerry R.B.
AU - Smith, Roger S.
AU - Mortimer, Simon R.
AU - Beaumont, Deborah A.
AU - Simkin, Janet
AU - Harris, Stephanie J.
AU - Shiel, Robert S.
AU - Quirk, Helen
AU - Harrison, Kate A.
AU - Lawson, Clare S.
AU - Hobbs, Phil J.
AU - Bardgett, Richard D.
N1 - Funding Information:
This work was funded by a grant awarded to a consortium led by R.D.B. by the UK Department for Environment, Food and Rural Affairs (Project BD1451). We are grateful to R. Brand-Hardy and V. Brown, and staff of Natural England, especially S. Peel, R. Jefferson and C. Pinche. We also thank Professor Vicky Temperton and an anonymous reviewer for comments that substantially improved the manuscript.
Publisher Copyright:
© 2017 The Authors. Journal of Applied Ecology © 2017 British Ecological Society
PY - 2017/10
Y1 - 2017/10
N2 - The success of grassland biodiversity restoration schemes is determined by many factors; as such their outcomes can be unpredictable. There is a need for improved understanding of the relative importance of below-ground factors to restoration success, such as contrasting soil type and management intensities, as well as plant community composition and order of assembly. We carried out an 8-year mesocosm experiment across three locations in the UK to explore the relative and interactive roles of various above-ground and below-ground factors in the establishment of target species, to determine general constraints on grassland restoration. Each location had a series of mesocosms with contrasting soil types and management status, which were initially sown with six grasses typical of species-poor grasslands targeted for restoration. Over 5 years, sets of plant species were added, to test how different vegetation treatments, including early-coloniser species and the hemiparasite Rhinanthus minor, and soil type and management, influenced the establishment of target plant species and community diversity. The addition of early-coloniser species to model grasslands suppressed the establishment of target species, indicating a strong priority effect. Soil type was also an important factor, but effects varied considerably across locations. In the absence of early-coloniser species, low soil nutrient availability improved establishment of target species across locations, although R. minor had no beneficial effect. Synthesis and applications. Our long-term, multi-site study indicates that successful restoration of species-rich grassland is dependent primarily on priority effects, especially in the form of early-coloniser species that suppress establishment of slow-growing target species. We also show that priority effects vary with soil conditions, being stronger in clay than sandy soils, and on soils of high nutrient availability. As such, our work emphasises the importance of considering priority effects and local soil conditions in developing management strategies for restoring plant species diversity in grassland.
AB - The success of grassland biodiversity restoration schemes is determined by many factors; as such their outcomes can be unpredictable. There is a need for improved understanding of the relative importance of below-ground factors to restoration success, such as contrasting soil type and management intensities, as well as plant community composition and order of assembly. We carried out an 8-year mesocosm experiment across three locations in the UK to explore the relative and interactive roles of various above-ground and below-ground factors in the establishment of target species, to determine general constraints on grassland restoration. Each location had a series of mesocosms with contrasting soil types and management status, which were initially sown with six grasses typical of species-poor grasslands targeted for restoration. Over 5 years, sets of plant species were added, to test how different vegetation treatments, including early-coloniser species and the hemiparasite Rhinanthus minor, and soil type and management, influenced the establishment of target plant species and community diversity. The addition of early-coloniser species to model grasslands suppressed the establishment of target species, indicating a strong priority effect. Soil type was also an important factor, but effects varied considerably across locations. In the absence of early-coloniser species, low soil nutrient availability improved establishment of target species across locations, although R. minor had no beneficial effect. Synthesis and applications. Our long-term, multi-site study indicates that successful restoration of species-rich grassland is dependent primarily on priority effects, especially in the form of early-coloniser species that suppress establishment of slow-growing target species. We also show that priority effects vary with soil conditions, being stronger in clay than sandy soils, and on soils of high nutrient availability. As such, our work emphasises the importance of considering priority effects and local soil conditions in developing management strategies for restoring plant species diversity in grassland.
KW - ecological restoration
KW - grassland
KW - nutrients
KW - plant species composition
KW - plant–soil interactions
KW - priority effects
KW - soil
KW - soil microbial community
UR - http://www.scopus.com/inward/record.url?scp=85011655566&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85011655566&partnerID=8YFLogxK
U2 - 10.1111/1365-2664.12869
DO - 10.1111/1365-2664.12869
M3 - Article (journal)
AN - SCOPUS:85011655566
SN - 0021-8901
VL - 54
SP - 1320
EP - 1330
JO - Journal of Applied Ecology
JF - Journal of Applied Ecology
IS - 5
ER -