Physical Response to a Simulated Period of Soccer-Specific Fixture Congestion

Research output: Contribution to journalArticle

1 Citation (Scopus)
19 Downloads (Pure)

Abstract

The aim of this study was to assess the physiological, perceptual, and mechanical measures associated with the completion of a simulated period of short-term soccer-specific fixture congestion. Ten male semi-professional soccer players completed three trials of a treadmill-based match simulation, with 48 hours intervening each trial. A repeated measures general linear model identified significantly (P= 0.02) lower knee flexor peak torque (PT) recorded at 300 degs∙s-1 in the second (141.27 ± 28.51 Nm) and third trials (139.12 ± 26.23 Nm) when compared to the first (154.17 ± 35.25 Nm). Similarly, muscle soreness (MS) and PT data recorded at 60 degs∙s-1 were significantly (P< 0.05) different in the third trial (MS= 42 ± 25 a.u; PT60= 131.10 ± 35.38 Nm) when compared to the first (MS= 29 ± 29 a.u; PT60= 145.61 ± 42.86 Nm). Significant (P= 0.003) differences were also observed for mean Bicep Femoris electromyography (EMGmean) between the third trial (T0-15= 126.36 ± 15.57 µV; T75-90= 52.18 ± 17.19 µV) and corresponding time points in the first trial (T0-15= 98.20 ± 23.49 µV; T75-90= 99.97 ± 39.81 µV). Cumulative increases in perceived exertion, heart rate, oxygen consumption, blood lactate concentrations, EMGmean, and PlayerLoadTM were recorded across each trial. MS and PT were also significantly different post-trial. There were however no significant main effects or interactions for the salivary Immunoglobulin A, and the medial-lateral PlayerLoadTM metrics. These data suggest a biomechanical and muscular emphasis with residual fatigue, with implications for injury risk and the development of recovery strategies.
Original languageEnglish
Pages (from-to)1075-1085
Number of pages11
JournalThe Journal of Strength and Conditioning Research
Volume33
Issue number4
Early online date10 Oct 2017
DOIs
Publication statusPublished - 1 Apr 2019

Fingerprint

Soccer
Myalgia
Torque
Electromyography
Oxygen Consumption
Immunoglobulin A
Fatigue
Linear Models
Lactic Acid
Knee
Heart Rate
Wounds and Injuries

Keywords

  • Biomechanics
  • Physiology
  • Isokinetic
  • electromyography
  • PlayerLoadTM
  • Recovery

Cite this

@article{aec6c6bdbc6349418244612455f784b7,
title = "Physical Response to a Simulated Period of Soccer-Specific Fixture Congestion",
abstract = "The aim of this study was to assess the physiological, perceptual, and mechanical measures associated with the completion of a simulated period of short-term soccer-specific fixture congestion. Ten male semi-professional soccer players completed three trials of a treadmill-based match simulation, with 48 hours intervening each trial. A repeated measures general linear model identified significantly (P= 0.02) lower knee flexor peak torque (PT) recorded at 300 degs∙s-1 in the second (141.27 ± 28.51 Nm) and third trials (139.12 ± 26.23 Nm) when compared to the first (154.17 ± 35.25 Nm). Similarly, muscle soreness (MS) and PT data recorded at 60 degs∙s-1 were significantly (P< 0.05) different in the third trial (MS= 42 ± 25 a.u; PT60= 131.10 ± 35.38 Nm) when compared to the first (MS= 29 ± 29 a.u; PT60= 145.61 ± 42.86 Nm). Significant (P= 0.003) differences were also observed for mean Bicep Femoris electromyography (EMGmean) between the third trial (T0-15= 126.36 ± 15.57 µV; T75-90= 52.18 ± 17.19 µV) and corresponding time points in the first trial (T0-15= 98.20 ± 23.49 µV; T75-90= 99.97 ± 39.81 µV). Cumulative increases in perceived exertion, heart rate, oxygen consumption, blood lactate concentrations, EMGmean, and PlayerLoadTM were recorded across each trial. MS and PT were also significantly different post-trial. There were however no significant main effects or interactions for the salivary Immunoglobulin A, and the medial-lateral PlayerLoadTM metrics. These data suggest a biomechanical and muscular emphasis with residual fatigue, with implications for injury risk and the development of recovery strategies.",
keywords = "Biomechanics, Physiology, Isokinetic, electromyography, PlayerLoadTM, Recovery",
author = "Richard Page and Kelly Marrin and Christopher Brogden and Matt Greig",
year = "2019",
month = "4",
day = "1",
doi = "10.1519/JSC.0000000000002257",
language = "English",
volume = "33",
pages = "1075--1085",
journal = "Journal of Strength and Conditioning Research",
issn = "1064-8011",
publisher = "NSCA National Strength and Conditioning Association",
number = "4",

}

TY - JOUR

T1 - Physical Response to a Simulated Period of Soccer-Specific Fixture Congestion

AU - Page, Richard

AU - Marrin, Kelly

AU - Brogden, Christopher

AU - Greig, Matt

PY - 2019/4/1

Y1 - 2019/4/1

N2 - The aim of this study was to assess the physiological, perceptual, and mechanical measures associated with the completion of a simulated period of short-term soccer-specific fixture congestion. Ten male semi-professional soccer players completed three trials of a treadmill-based match simulation, with 48 hours intervening each trial. A repeated measures general linear model identified significantly (P= 0.02) lower knee flexor peak torque (PT) recorded at 300 degs∙s-1 in the second (141.27 ± 28.51 Nm) and third trials (139.12 ± 26.23 Nm) when compared to the first (154.17 ± 35.25 Nm). Similarly, muscle soreness (MS) and PT data recorded at 60 degs∙s-1 were significantly (P< 0.05) different in the third trial (MS= 42 ± 25 a.u; PT60= 131.10 ± 35.38 Nm) when compared to the first (MS= 29 ± 29 a.u; PT60= 145.61 ± 42.86 Nm). Significant (P= 0.003) differences were also observed for mean Bicep Femoris electromyography (EMGmean) between the third trial (T0-15= 126.36 ± 15.57 µV; T75-90= 52.18 ± 17.19 µV) and corresponding time points in the first trial (T0-15= 98.20 ± 23.49 µV; T75-90= 99.97 ± 39.81 µV). Cumulative increases in perceived exertion, heart rate, oxygen consumption, blood lactate concentrations, EMGmean, and PlayerLoadTM were recorded across each trial. MS and PT were also significantly different post-trial. There were however no significant main effects or interactions for the salivary Immunoglobulin A, and the medial-lateral PlayerLoadTM metrics. These data suggest a biomechanical and muscular emphasis with residual fatigue, with implications for injury risk and the development of recovery strategies.

AB - The aim of this study was to assess the physiological, perceptual, and mechanical measures associated with the completion of a simulated period of short-term soccer-specific fixture congestion. Ten male semi-professional soccer players completed three trials of a treadmill-based match simulation, with 48 hours intervening each trial. A repeated measures general linear model identified significantly (P= 0.02) lower knee flexor peak torque (PT) recorded at 300 degs∙s-1 in the second (141.27 ± 28.51 Nm) and third trials (139.12 ± 26.23 Nm) when compared to the first (154.17 ± 35.25 Nm). Similarly, muscle soreness (MS) and PT data recorded at 60 degs∙s-1 were significantly (P< 0.05) different in the third trial (MS= 42 ± 25 a.u; PT60= 131.10 ± 35.38 Nm) when compared to the first (MS= 29 ± 29 a.u; PT60= 145.61 ± 42.86 Nm). Significant (P= 0.003) differences were also observed for mean Bicep Femoris electromyography (EMGmean) between the third trial (T0-15= 126.36 ± 15.57 µV; T75-90= 52.18 ± 17.19 µV) and corresponding time points in the first trial (T0-15= 98.20 ± 23.49 µV; T75-90= 99.97 ± 39.81 µV). Cumulative increases in perceived exertion, heart rate, oxygen consumption, blood lactate concentrations, EMGmean, and PlayerLoadTM were recorded across each trial. MS and PT were also significantly different post-trial. There were however no significant main effects or interactions for the salivary Immunoglobulin A, and the medial-lateral PlayerLoadTM metrics. These data suggest a biomechanical and muscular emphasis with residual fatigue, with implications for injury risk and the development of recovery strategies.

KW - Biomechanics

KW - Physiology

KW - Isokinetic

KW - electromyography

KW - PlayerLoadTM

KW - Recovery

UR - http://www.mendeley.com/research/physical-response-simulated-period-soccerspecific-fixture-congestion

U2 - 10.1519/JSC.0000000000002257

DO - 10.1519/JSC.0000000000002257

M3 - Article

VL - 33

SP - 1075

EP - 1085

JO - Journal of Strength and Conditioning Research

JF - Journal of Strength and Conditioning Research

SN - 1064-8011

IS - 4

ER -