### Abstract

Original language | English |
---|---|

Pages (from-to) | 273-279 |

Journal | Mathematical Proceedings of the Cambridge Philosophical Society |

Volume | 88 |

Issue number | 2 |

DOIs | |

Publication status | Published - 1980 |

### Fingerprint

### Cite this

*Mathematical Proceedings of the Cambridge Philosophical Society*,

*88*(2), 273-279. https://doi.org/10.1017/S0305004100057571

}

*Mathematical Proceedings of the Cambridge Philosophical Society*, vol. 88, no. 2, pp. 273-279. https://doi.org/10.1017/S0305004100057571

**On real simple singularities.** / Bruce, J.W.; Giblin, P.J.

Research output: Contribution to journal › Article

TY - JOUR

T1 - On real simple singularities

AU - Bruce, J.W.

AU - Giblin, P.J.

PY - 1980

Y1 - 1980

N2 - In (3), Cor. 2 to Th. 1, the first author proved that in the complex jet space Jk (n, 1) the orbits of simple singularities form canonical strata. By definition the canonical stratification is contact invariant so the proof consisted essentially of two steps: firstly, any two functions in the same canonical stratum are C0-equivalent by right-left changes of coordinates, and secondly, the right codimension (and hence the Milnor number) of an isolated complex singularity is a topological invariant.

AB - In (3), Cor. 2 to Th. 1, the first author proved that in the complex jet space Jk (n, 1) the orbits of simple singularities form canonical strata. By definition the canonical stratification is contact invariant so the proof consisted essentially of two steps: firstly, any two functions in the same canonical stratum are C0-equivalent by right-left changes of coordinates, and secondly, the right codimension (and hence the Milnor number) of an isolated complex singularity is a topological invariant.

U2 - 10.1017/S0305004100057571

DO - 10.1017/S0305004100057571

M3 - Article

VL - 88

SP - 273

EP - 279

JO - Mathematical Proceedings of the Cambridge Philosophical Society

JF - Mathematical Proceedings of the Cambridge Philosophical Society

SN - 0305-0041

IS - 2

ER -