Natural succession and clearcutting as drivers of environmental heterogeneity and beta diversity in North American boreal forests

Sergio Garcia-Tejero, John R Spence, John O'Halloran, Stephane Bourassa, Anne Oxbrough

Research output: Contribution to journalArticle

12 Downloads (Pure)

Abstract

Clear-cutting alters natural ecosystem processes by reducing landscape heterogeneity. It is the dominant harvesting technique across the boreal zone, yet understanding of how environmental heterogeneity and beta diversity are structured in forest ecosystems and postclear cut is lacking. We use ground-dwelling arthropods as models to determine how natural succession (progression from deciduous to mixed to coniferous cover types) and clear-cutting change boreal forests, exploring the role of environmental heterogeneity in shaping beta diversity across multiple spatial scales (between-cover types and between-stands of the same cover type (1600 to 8500 m), between-plots (100 to 400 m) and within-plots (20 to 40 m)). We characterise environmental heterogeneity as variability in combined structural, vegetational and soil parameters, and beta diversity, as variability in assemblage composition. Clear-cutting homogenised forest environments across all spatial scales, reducing total environmental heterogeneity by 35%. Arthropod beta diversity reflected these changes at larger scales suggesting that environmental heterogeneity is useful in explaining beta diversity both between-cover types and between-stands of the same cover type. However, at smaller scales, within- and between-plots spider beta diversity reflected the lower environmental heterogeneity in regenerating stands, whereas staphylinid and carabids assemblages were not homogenised 12 years post-harvest. Differences in environmental heterogeneity and staphylinid beta diversity between cover types were also important at small scales. In regenerating stands, we detected a subtle yet notable effect of pre-felling cover type on environmental heterogeneity and arthropods, where pre-felling cover type accounted for a significant amount of variance in beta diversity, indicating that biological legacies (e.g. soil pH reflecting pre-harvest conditions) may have a role in driving beta diversity even 12 years post-harvest. This study highlights the importance of understanding site history when predicting impacts of change in forest ecosystems. Further, to understand drivers of beta diversity we must identify biological legacies shaping community structure.
Original languageEnglish
Pages (from-to)1-16
JournalPLoS ONE
Early online date2 Nov 2018
DOIs
Publication statusE-pub ahead of print - 2 Nov 2018

Fingerprint

Arthropods
clearcutting
boreal forests
Ecosystem
arthropods
felling
Ecosystems
forest ecosystems
Soil
Spiders
Biodiversity
Soils
Araneae
soil pH
community structure
History
biodiversity
history
ecosystems
Taiga

Cite this

Garcia-Tejero, Sergio ; Spence, John R ; O'Halloran, John ; Bourassa, Stephane ; Oxbrough, Anne. / Natural succession and clearcutting as drivers of environmental heterogeneity and beta diversity in North American boreal forests. In: PLoS ONE. 2018 ; pp. 1-16.
@article{c7ef49dbc9c2431999daf0290a20f92c,
title = "Natural succession and clearcutting as drivers of environmental heterogeneity and beta diversity in North American boreal forests",
abstract = "Clear-cutting alters natural ecosystem processes by reducing landscape heterogeneity. It is the dominant harvesting technique across the boreal zone, yet understanding of how environmental heterogeneity and beta diversity are structured in forest ecosystems and postclear cut is lacking. We use ground-dwelling arthropods as models to determine how natural succession (progression from deciduous to mixed to coniferous cover types) and clear-cutting change boreal forests, exploring the role of environmental heterogeneity in shaping beta diversity across multiple spatial scales (between-cover types and between-stands of the same cover type (1600 to 8500 m), between-plots (100 to 400 m) and within-plots (20 to 40 m)). We characterise environmental heterogeneity as variability in combined structural, vegetational and soil parameters, and beta diversity, as variability in assemblage composition. Clear-cutting homogenised forest environments across all spatial scales, reducing total environmental heterogeneity by 35{\%}. Arthropod beta diversity reflected these changes at larger scales suggesting that environmental heterogeneity is useful in explaining beta diversity both between-cover types and between-stands of the same cover type. However, at smaller scales, within- and between-plots spider beta diversity reflected the lower environmental heterogeneity in regenerating stands, whereas staphylinid and carabids assemblages were not homogenised 12 years post-harvest. Differences in environmental heterogeneity and staphylinid beta diversity between cover types were also important at small scales. In regenerating stands, we detected a subtle yet notable effect of pre-felling cover type on environmental heterogeneity and arthropods, where pre-felling cover type accounted for a significant amount of variance in beta diversity, indicating that biological legacies (e.g. soil pH reflecting pre-harvest conditions) may have a role in driving beta diversity even 12 years post-harvest. This study highlights the importance of understanding site history when predicting impacts of change in forest ecosystems. Further, to understand drivers of beta diversity we must identify biological legacies shaping community structure.",
author = "Sergio Garcia-Tejero and Spence, {John R} and John O'Halloran and Stephane Bourassa and Anne Oxbrough",
year = "2018",
month = "11",
day = "2",
doi = "10.1371/journal.pone.0206931",
language = "English",
pages = "1--16",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "PLOS",

}

Natural succession and clearcutting as drivers of environmental heterogeneity and beta diversity in North American boreal forests. / Garcia-Tejero, Sergio; Spence, John R; O'Halloran, John; Bourassa, Stephane; Oxbrough, Anne.

In: PLoS ONE, 02.11.2018, p. 1-16.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Natural succession and clearcutting as drivers of environmental heterogeneity and beta diversity in North American boreal forests

AU - Garcia-Tejero, Sergio

AU - Spence, John R

AU - O'Halloran, John

AU - Bourassa, Stephane

AU - Oxbrough, Anne

PY - 2018/11/2

Y1 - 2018/11/2

N2 - Clear-cutting alters natural ecosystem processes by reducing landscape heterogeneity. It is the dominant harvesting technique across the boreal zone, yet understanding of how environmental heterogeneity and beta diversity are structured in forest ecosystems and postclear cut is lacking. We use ground-dwelling arthropods as models to determine how natural succession (progression from deciduous to mixed to coniferous cover types) and clear-cutting change boreal forests, exploring the role of environmental heterogeneity in shaping beta diversity across multiple spatial scales (between-cover types and between-stands of the same cover type (1600 to 8500 m), between-plots (100 to 400 m) and within-plots (20 to 40 m)). We characterise environmental heterogeneity as variability in combined structural, vegetational and soil parameters, and beta diversity, as variability in assemblage composition. Clear-cutting homogenised forest environments across all spatial scales, reducing total environmental heterogeneity by 35%. Arthropod beta diversity reflected these changes at larger scales suggesting that environmental heterogeneity is useful in explaining beta diversity both between-cover types and between-stands of the same cover type. However, at smaller scales, within- and between-plots spider beta diversity reflected the lower environmental heterogeneity in regenerating stands, whereas staphylinid and carabids assemblages were not homogenised 12 years post-harvest. Differences in environmental heterogeneity and staphylinid beta diversity between cover types were also important at small scales. In regenerating stands, we detected a subtle yet notable effect of pre-felling cover type on environmental heterogeneity and arthropods, where pre-felling cover type accounted for a significant amount of variance in beta diversity, indicating that biological legacies (e.g. soil pH reflecting pre-harvest conditions) may have a role in driving beta diversity even 12 years post-harvest. This study highlights the importance of understanding site history when predicting impacts of change in forest ecosystems. Further, to understand drivers of beta diversity we must identify biological legacies shaping community structure.

AB - Clear-cutting alters natural ecosystem processes by reducing landscape heterogeneity. It is the dominant harvesting technique across the boreal zone, yet understanding of how environmental heterogeneity and beta diversity are structured in forest ecosystems and postclear cut is lacking. We use ground-dwelling arthropods as models to determine how natural succession (progression from deciduous to mixed to coniferous cover types) and clear-cutting change boreal forests, exploring the role of environmental heterogeneity in shaping beta diversity across multiple spatial scales (between-cover types and between-stands of the same cover type (1600 to 8500 m), between-plots (100 to 400 m) and within-plots (20 to 40 m)). We characterise environmental heterogeneity as variability in combined structural, vegetational and soil parameters, and beta diversity, as variability in assemblage composition. Clear-cutting homogenised forest environments across all spatial scales, reducing total environmental heterogeneity by 35%. Arthropod beta diversity reflected these changes at larger scales suggesting that environmental heterogeneity is useful in explaining beta diversity both between-cover types and between-stands of the same cover type. However, at smaller scales, within- and between-plots spider beta diversity reflected the lower environmental heterogeneity in regenerating stands, whereas staphylinid and carabids assemblages were not homogenised 12 years post-harvest. Differences in environmental heterogeneity and staphylinid beta diversity between cover types were also important at small scales. In regenerating stands, we detected a subtle yet notable effect of pre-felling cover type on environmental heterogeneity and arthropods, where pre-felling cover type accounted for a significant amount of variance in beta diversity, indicating that biological legacies (e.g. soil pH reflecting pre-harvest conditions) may have a role in driving beta diversity even 12 years post-harvest. This study highlights the importance of understanding site history when predicting impacts of change in forest ecosystems. Further, to understand drivers of beta diversity we must identify biological legacies shaping community structure.

U2 - 10.1371/journal.pone.0206931

DO - 10.1371/journal.pone.0206931

M3 - Article

SP - 1

EP - 16

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

ER -