Abstract
Original language | English |
---|---|
Pages (from-to) | 272-303 |
Journal | Psychological Review |
Volume | 119 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2012 |
Access to Document
Fingerprint
Dive into the research topics of 'Multidimensional vector model of stimulus–response compatibility'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Psychological Review, Vol. 119, No. 2, 2012, p. 272-303.
Research output: Contribution to journal › Article (journal) › peer-review
TY - JOUR
T1 - Multidimensional vector model of stimulus–response compatibility
AU - Yamaguchi, Motonori
AU - Proctor, Robert W
N1 - Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111, 1036–1060. doi:10.1037/0033-295X.111.4.1036 Ansorge, U., & Wu¨hr, P. (2004). A response-discrimination account of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 30, 365–377. doi:10.1037/0096-1523.30.2.365 Ashby, F. G. (Ed.). (1992). Multidimensional models of perception and cognition. Hillsdale, NJ: Erlbaum. Ashby, F. G. (2000). A stochastic version of general recognition theory. Journal of Mathematical Psychology, 44, 310 –329. doi:10.1006/jmps.1998.1249 Ashby, F. G., & Maddox, W. T. (1994). A response time theory of separability and integrity in speeded classification. Journal of Mathematical Psychology, 38, 423–466. doi:10.1006/jmps.1994.1032 Ashby, F. G., & Perrin, N. A. (1988). Toward a unified theory of similarity and recognition. Psychological Review, 95, 124–150. doi:10.1037/0033- 295X.95.1.124 Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological Review, 93, 154 –179. doi:10.1037/0033-295X.93.2.154 Audley, R. J., & Pike, A. R. (1965). Some alternative stochastic models of choice. British Journal of Mathematical and Statistical Psychology, 18, 207–225. doi:10.1111/j.2044-8317.1965.tb00342.x Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry: The power of response time distributional analyses. Current Directions in Psychological Science, 20, 160–166. doi:10.1177/ 0963721411408885 Böckenholt, I., & Gaul, W. (1986). Analysis of choice behavior via probabilistic ideal point and vector models. Applied Stochastic Models and Data Analysis, 2, 209–226. Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparison. Biometrika, 39, 324–345. doi:10.2307/2334029 Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice reaction time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178. doi:10.1016/j.cogpsych.2007.12.002 Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547. doi:10.1037/0033-295X.97.4.523 Cagigas, X. E., Filoteo, J., Stricker, J. L., Rilling, L. M., & Friedrich, F. J. (2007). Flanker compatibility effects in patients with Parkinson’s disease: Impact of target onset delay and trial-by-trial stimulus variation. Brain and Cognition, 63, 247–259. doi:10.1016/j.bandc.2006.09.002 Carroll, J. D. (1980). Models and methods for multidimensional analysis of preferential choice (or other dominance) data. In E. D. Lantermann & H. Feger (Eds.), Similarity and choice (pp. 234–289). Bern, Switzerland: Hans Huber. Carroll, J. D., & Chang, J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283–319. doi:10.1007/ BF02310791 Cho, Y. S., & Proctor, R. W. (2003). Stimulus and response representations underlying orthogonal stimulus-response compatibility effects. Psychonomic Bulletin & Review, 10, 45–73. doi:10.3758/BF03196468 Cohen, A. L., Sanborn, A. N., & Shiffrin, R. M. (2008). Model evaluation using grouped or individual data. Psychonomic Bulletin & Review, 15, 692–712. doi:10.3758/PBR.15.4.692 Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57, 145–158. doi:10.1037/h0060984 De Houwer, J. (2004). Spatial Simon effects with nonspatial responses. Psychonomic Bulletin & Review, 11, 49–53. doi:10.3758/BF03206459 De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750. doi:10.1037/0096-1523.20.4.731 DeSarbo, W. S., & Cho, J. (1989). A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data. Psychometrika, 54, 105–129. doi:10.1007/BF02294452 De Soete, G., & Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering vector model. Psychometrika, 48, 553–566. doi:10.1007/BF02293879 De Soete, G., & Carroll, J. D. (1992). Probabilistic multidimensional models of pairwise choice data. In F. G. Ashby (Ed.), Multidimensional models of perception and cognition (pp. 61–88). Hillsdale, NJ: Erlbaum. De Soete, G., Carroll, J. D., & DeSarbo, W. S. (1986). The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data. Journal of Mathematical Psychology, 30, 28–41. doi:10.1016/0022-2496(86)90040-4 Dzhafarov, E. N. (1993). Grice-representability of response time distribution families. Psychometrika, 58, 281–314. doi:10.1007/BF02294577 Dzhafarov, E. N., & Colonius, H. (2001). Multidimensional Fechnerian scaling: Basics. Journal of Mathematical Psychology, 45, 670–719. doi:10.1006/jmps.2000.1341 Dzhafarov, E. N., & Colonius, H. (2011). The Fechnerian idea. American Journal of Psychology, 124, 127–140. doi:10.5406/amerjpsyc.124.2.0127 Eimer, M., & Schlaghecken, E. (1998). Effects of masked stimuli on motor activation: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 24,1737–1747. doi:10.1037/0096-1523.24.6.1737 Ennis, D. M. (1988). Confusable and discriminable stimuli: Comment on Nosofsky (1986) and Shepard (1986). Journal of Experimental Psychology: General, 117, 408–411. doi:10.1037/0096-3445.117.4.408 Ennis, D. M. (1993). A single multidimensional model for discrimination, identification, and preferential choice. Acta Psychologica, 84, 17–27. doi:10.1016/0001-6918(93)90069-4 Ennis, D. M., & Johnson, N. L. (1994). A general model for preferential and triadic choice in terms of central F distribution functions. Psychometrika, 59, 91–96. doi:10.1007/BF02294268 Ennis, D. M., Palen, J. J., & Mullen, K. (1988). A multidimensional stochastic theory of similarity. Journal of Mathematical Psychology, 32, 449–465. doi:10.1016/0022-2496(88)90023-5 Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: Action planning primes action-related stimulus dimensions. Psychological Research, 71, 22–29. doi:10.1007/s00426-005-0033-3 Fechner, G. T. (1966). Elements of psychophysics (Vol. 1; H. E. Adler, Trans.). New York, NY: Holt, Rinehart & Winston. (Original work published in 1860) Fific, M., Little, D. R., & Nosofsky, R. M. (2010). Logical-rule models of classification response times: A synthesis of mental-architecture, random-walk, and decision-bound approaches. Psychological Review, 117, 309–348. doi:10.1037/a0018526 Fitts, P. M., & Deininger, R. L. (1954). S-R compatibility: Correspondence among paired elements within stimulus and response codes. Journal of Experimental Psychology, 48, 483–492. doi:10.1037/h0054967 Fitts, P. M., & Seeger, C. M. (1953). S-R compatibility: Spatial characteristics of stimulus and response codes. Journal of Experimental Psychology, 46, 199–210. doi:10.1037/h0062827 Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York, NY: Wiley. Guiard, Y. (1983). The lateral coding of rotations: A study of the Simon effect with wheel-rotation responses. Journal of Motor Behavior, 15, 331–342. Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms (2nd ed.). Hoboken, NJ: Wiley. Heathcote, A., Popiel, S. J., & Mewhort, D. J. K. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109, 340–347. doi:10.1037/0033-2909.109.2.340 Hommel, B. (1993). The role of attention for the Simon effect. Psychological Research, 55, 208–222. doi:10.1007/BF00419608 Hommel, B. (1994). Spontaneous decay of response-code activation. Psychological Research, 56, 261–268. doi:10.1007/BF00419656 Hommel, B. (2000). The prepared reflex: Automaticity and control in stimulus-response translation. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 247–273). Cambridge, MA: MIT Press. Hommel, B., Mu¨sseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. doi:10.1017/ S0140525X01000103 Hommel, B., & Prinz, W. (Eds.). (1997). Theoretical issues in stimulusresponse compatibility. Amsterdam, the Netherlands: North-Holland. Inhoff, A. W., Rosenbaum, D. A., Gordon, A. M., & Campbell, J. A. (1984). Stimulus–response compatibility and motor programming of manual response sequences. Journal of Experimental Psychology: Human Perception and Performance, 10, 724–733. doi:10.1037/0096-1523.10.5.724 Klein, R. M., Dove, M. E., Ivanoff, J., & Eskes, G. A. (2006). Parametric exploration of the Simon effect across visual space. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expe´rimentale, 60, 112–126. doi:10.1037/cjep2006012 Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility—A model and taxonomy. Psychological Review, 97, 253–270. doi:10.1037/0033-295X.97.2.253 Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT Press. Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387–394. doi:10.1037/0096-1523.27.2.387 Kunde, W., Mu¨sseler, J., & Heuer, H. (2007). Spatial compatibility effects with tool use. Human Factors, 49, 661– 670. doi:10.1518/001872007X215737 Lamberts, K., Tavernier, G., & d’Ydewalle, G. (1992). Effects of multiple reference points in spatial stimulus-response compatibility. Acta Psychologica, 79, 115–130. doi:10.1016/0001-6918(92)90028-C Leonhard, T., Ruiz Ferna´ndez, S., Ulrich, R., & Miller, J. (2011). Dual-task processing when Task 1 is hard and Task 2 is easy: Reversed central processing order? Journal of Experimental Psychology: Human Perception and Performance, 37, 115–136. doi:10.1037/a0019238 Lleras, A., Moore, C. M., & Mordkoff, J. T. (2004). Looking for the source of the Simon effect: Evidence of multiple codes. American Journal of Psychology, 117, 531–542. doi:10.2307/4148990 Logan, G. D. (1994). Spatial attention and the apprehension of spatial relations. Journal of Experimental Psychology: Human Perception and Performance, 20, 1015–1036. doi:10.1037/0096-1523.20.5.1015 Logan, G. D. (1996). The CODE theory of visual attention: An integration of space-based and object-based attention. Psychological Review, 103, 603–649. doi:10.1037/0033-295X.103.4.603 Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109, 376–400. doi:10.1037/0033-295X.109.2.376 Lu, C.-H. (1997). Correspondence effects for irrelevant information in choice-reaction tasks: Characterizing the S-R relations and the processing dynamics. In B. Hommel & W. Prinz (Eds.), Theoretical issues in stimulus-response compatibility (pp. 85–117). Amsterdam, the Netherlands: North-Holland. Lu, C.-H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2, 174–207. doi:10.3758/BF03210959 Luce, R. D. (1959). Individual choice behavior. New York, NY: Wiley. Luce, R. D., Bush, R. R., & Galanter, E. (1963). Handbook of mathematical psychology. New York, NY: Wiley. Maddox, W. T., & Ashby, F. G. (1996). Perceptual separability, decisional separability, and the identification–speeded classification relationship. Journal of Experimental Psychology: Human Perception and Performance, 22, 795–817. doi:10.1037/0096-1523.22.4.795 McCann, R. S., & Johnston, J. C. (1992). Locus of the single-channel bottleneck in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 18, 471–484. doi:10.1037/0096-1523.18.2.471 Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238. doi:10.1037/0033-295X.85.3.207 Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: I. Basic mechanisms. Psychological Review, 104, 3– 65. doi:10.1037/0033-295X.104.1.3 Miles, J. D., Yamaguchi, M., & Proctor, R. W. (2009). Dilution of compatibility effects in Simon-type tasks depends on categorical similarity between distractors and diluters. Attention, Perception, & Psychophysics, 71, 1598–1606. doi:10.3758/APP.71.7.1598 Mullen, K., & Ennis, D. M. (1991). A simple multivariate probabilistic model for referential and triadic choices. Psychometrika, 56, 69–75. doi:10.1007/BF02294586 Muller, H. J., & Krummenacher, J. (2006). Locus of dimension weighting: Preattentive or postselective? Visual Cognition, 14, 490–513. doi: 10.1080/13506280500194154 Murdock, B. B. (1985). An analysis of the strength-latency relationship. Memory & Cognition, 13, 511–521. doi:10.3758/BF03198322 Myung, J. I. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90 –100. doi:10.1016/S0022-2496(02)00028-7 Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308–313. Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press. Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem solving. Psychological Review, 65, 151–166. doi: 10.1037/h0048495 Nicoletti, R., & Umilta`, C. (1985). Responding with hand and foot: The right/left prevalence in spatial compatibility is still present. Perception & Psychophysics, 38, 211–216. doi:10.3758/BF03207147 Nosofsky, R. M. (1985). Luce’s choice model and Thurstone’s categorical judgment model compared: Kornbrot’s data revisited. Perception & Psychophysics, 37, 89–91. doi:10.3758/BF03207144 Nosofsky, R. M. (1986). Attention, similarity, and the identificationcategorization relationship. Journal of Experimental Psychology: General, 115, 39–57. doi:10.1037/0096-3445.115.1.39 Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104, 266–300. doi:10.1037/0033-295X.104.2.266 Nosofsky, R. M., & Stanton, R. D. (2005). Speeded classification in a probabilistic category structure: Contrasting exemplar-retrieval, decision-boundary, and prototype models. Journal of Experimental Psychology: Human Perception and Performance, 31, 608 – 629. doi: 10.1037/0096-1523.31.3.608 Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 55–85). Hillsdale, NJ: Erlbaum. Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416–442. doi:10.1037/0033-2909.132.3.416 Proctor, R. W., & Reeve, T. (1985). Compatibility effects in the assignment of symbolic stimuli to discrete finger responses. Journal of Experimental Psychology: Human Perception and Performance, 11, 623–639. doi:10.1037/0096-1523.11.5.623 Proctor, R. W., & Van Zandt, T. (2008). Human factors in simple and complex systems (2nd ed.). Boca Raton, FL: CRE Press. Proctor, R. W., & Vu, K.-P. L. (2006). Stimulus-response compatibility principles: Data, theory and application. Boca Raton, FL: CRC Press. Proctor, R. W., Yamaguchi, M., Dutt, V., & Gonzalez, C. (2011). Dissociation of S-R compatibility and Simon effects with mixed tasks and mappings. Manuscript submitted for publication. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108. doi:10.1037/0033-295X.85.2.59 Ratcliff, R., & Smith, P. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111, 333–367. doi:10.1037/0033-295X.111.2.333 Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9, 438–481. doi:10.3758/BF03196302 Rosch, E. H. (1
PY - 2012
Y1 - 2012
N2 - The present study proposes and examines the multidimensional vector (MDV) model framework as a modeling schema for choice response times. MDV extends the Thurstonian model, as well as signal detection theory, to classification tasks by taking into account the influence of response properties on stimulus discrimination. It is capable of accounting for stimulus–response compatibility, which is known to be an influential task variable determining choice-reaction performance but has not been considered in previous mathematical modeling efforts. Specific MDV models were developed for 5 experiments using the Simon task, for which stimulus location is task irrelevant, to examine the validity of model assumptions and illustrate characteristic behaviors of model parameters. The MDV models accounted for the experimental data to a remarkable degree, demonstrating the adequacy of the framework as a general schema for modeling the latency of choice performance. Some modeling issues involved in the MDV model framework are discussed.
AB - The present study proposes and examines the multidimensional vector (MDV) model framework as a modeling schema for choice response times. MDV extends the Thurstonian model, as well as signal detection theory, to classification tasks by taking into account the influence of response properties on stimulus discrimination. It is capable of accounting for stimulus–response compatibility, which is known to be an influential task variable determining choice-reaction performance but has not been considered in previous mathematical modeling efforts. Specific MDV models were developed for 5 experiments using the Simon task, for which stimulus location is task irrelevant, to examine the validity of model assumptions and illustrate characteristic behaviors of model parameters. The MDV models accounted for the experimental data to a remarkable degree, demonstrating the adequacy of the framework as a general schema for modeling the latency of choice performance. Some modeling issues involved in the MDV model framework are discussed.
U2 - 10.1037/a0026620
DO - 10.1037/a0026620
M3 - Article (journal)
SN - 0033-295x
VL - 119
SP - 272
EP - 303
JO - Psychological Review
JF - Psychological Review
IS - 2
ER -