### Abstract

Original language | English |
---|---|

Pages (from-to) | 622-633 |

Number of pages | 12 |

Journal | Robotics and Autonomous Systems |

Volume | 58 |

Issue number | 5 |

DOIs | |

Publication status | Published - 31 May 2010 |

### Fingerprint

### Keywords

- Inverse kinematic solution
- KSOM-SC architecture
- Kohonen Self-Organizing Map (KSOM)
- Network inversion
- Radial Basis Function Network (RBFN)
- Redundancy resolution
- Redundant manipulator

### Cite this

*Robotics and Autonomous Systems*,

*58*(5), 622-633. https://doi.org/10.1016/j.robot.2009.12.002

}

*Robotics and Autonomous Systems*, vol. 58, no. 5, pp. 622-633. https://doi.org/10.1016/j.robot.2009.12.002

**Kinematic control of a redundant manipulator using an inverse-forward adaptive scheme with a KSOM based hint generator.** / Kumar, Swagat; Behera, Laxmidhar; McGinnity, T. M.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Kinematic control of a redundant manipulator using an inverse-forward adaptive scheme with a KSOM based hint generator

AU - Kumar, Swagat

AU - Behera, Laxmidhar

AU - McGinnity, T. M.

PY - 2010/5/31

Y1 - 2010/5/31

N2 - This paper proposes an online inverse-forward adaptive scheme with a KSOM based hint generator for solving the inverse kinematic problem of a redundant manipulator. In this approach, a feed-forward network such as a radial basis function (RBF) network is used to learn the forward kinematic map of the redundant manipulator. This network is inverted using an inverse-forward adaptive scheme until the network inversion solution guides the manipulator end-effector to reach a given target position with a specified accuracy. The positioning accuracy, attainable by a conventional network inversion scheme, depends on the approximation error present in the forward model. But, an accurate forward map would require a very large size of training data as well as network architecture. The proposed inverse-forward adaptive scheme effectively approximates the forward map around the joint angle vector provided by a hint generator. Thus the inverse kinematic solution obtained using the network inversion approach can take the end-effector to the target position within any arbitrary accuracy. In order to satisfy the joint angle constraints, it is necessary to provide the network inversion algorithm with an initial hint for the joint angle vector. Since a redundant manipulator can reach a given target end-effector position through several joint angle vectors, it is desirable that the hint generator is capable of providing multiple hints. This problem has been addressed by using a Kohonen self organizing map based sub-clustering (KSOM-SC) network architecture. The redundancy resolution process involves selecting a suitable joint angle configuration based on different task related criteria. The simulations and experiments are carried out on a 7 DOF PowerCube™ manipulator. It is shown that one can obtain a positioning accuracy of 1 mm without violating joint angle constraints even when the forward approximation error is as large as 4 cm. An obstacle avoidance problem has also been solved to demonstrate the redundancy resolution process with the proposed scheme. © 2009 Elsevier B.V.

AB - This paper proposes an online inverse-forward adaptive scheme with a KSOM based hint generator for solving the inverse kinematic problem of a redundant manipulator. In this approach, a feed-forward network such as a radial basis function (RBF) network is used to learn the forward kinematic map of the redundant manipulator. This network is inverted using an inverse-forward adaptive scheme until the network inversion solution guides the manipulator end-effector to reach a given target position with a specified accuracy. The positioning accuracy, attainable by a conventional network inversion scheme, depends on the approximation error present in the forward model. But, an accurate forward map would require a very large size of training data as well as network architecture. The proposed inverse-forward adaptive scheme effectively approximates the forward map around the joint angle vector provided by a hint generator. Thus the inverse kinematic solution obtained using the network inversion approach can take the end-effector to the target position within any arbitrary accuracy. In order to satisfy the joint angle constraints, it is necessary to provide the network inversion algorithm with an initial hint for the joint angle vector. Since a redundant manipulator can reach a given target end-effector position through several joint angle vectors, it is desirable that the hint generator is capable of providing multiple hints. This problem has been addressed by using a Kohonen self organizing map based sub-clustering (KSOM-SC) network architecture. The redundancy resolution process involves selecting a suitable joint angle configuration based on different task related criteria. The simulations and experiments are carried out on a 7 DOF PowerCube™ manipulator. It is shown that one can obtain a positioning accuracy of 1 mm without violating joint angle constraints even when the forward approximation error is as large as 4 cm. An obstacle avoidance problem has also been solved to demonstrate the redundancy resolution process with the proposed scheme. © 2009 Elsevier B.V.

KW - Inverse kinematic solution

KW - KSOM-SC architecture

KW - Kohonen Self-Organizing Map (KSOM)

KW - Network inversion

KW - Radial Basis Function Network (RBFN)

KW - Redundancy resolution

KW - Redundant manipulator

UR - http://www.mendeley.com/research/kinematic-control-redundant-manipulator-using-inverseforward-adaptive-scheme-ksom-based-hint-generat

U2 - 10.1016/j.robot.2009.12.002

DO - 10.1016/j.robot.2009.12.002

M3 - Article

VL - 58

SP - 622

EP - 633

JO - Robotics and Autonomous Systems

JF - Robotics and Autonomous Systems

SN - 0921-8890

IS - 5

ER -