Abstract
Original language | English |
---|---|
Pages (from-to) | 327-346 |
Journal | Wetlands Ecology and Management |
Volume | 23 |
Issue number | 3 |
Early online date | 31 Dec 2014 |
DOIs | |
Publication status | Published - 30 Jun 2015 |
Keywords
- Peat
- Greenhouse gases
- Remote sensing
- Tropical ecology
- Carbon cycle
Access to Document
- Lawson et al 2015 Wetlands Ecology and Management - improving estimates of tropical peatland - post-print.pdfAccepted author manuscript, 1.5 MBLicence: CC BY-NC-ND
Fingerprint
Dive into the research topics of 'Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Wetlands Ecology and Management, Vol. 23, No. 3, 30.06.2015, p. 327-346.
Research output: Contribution to journal › Article (journal) › peer-review
TY - JOUR
T1 - Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes
AU - Lawson, I.T.
AU - Kelly, T.
AU - Aplin, P.
AU - Boom, A.
AU - Dargie, G.
AU - Draper, F.C.H.
AU - Hassan, P.N.Z.B.P.
AU - Hoyos-Santillan, J.
AU - Kaduk, J.
AU - Large, D.
AU - Murphy, W.
AU - Page, S.E.
AU - Roucoux, K.H.
AU - Sjogersten, S.
AU - Tansey, K.
AU - Waldram, M.
AU - Wedeux, B.M.M.
AU - Wheeler, J.
N1 - Allen JA, Krauss KW, Ewel KC, Keeland BD, Waguk EE (2005) A tropical freshwater wetland: 1. Structure, growth, and regeneration. Wetl Ecol Manage 13:657–669 Alsdorf DE (2003) Water storage of the central Amazon floodplain measured with GIS and remote sensing imagery. Ann Assoc Am Geogr 93:55–66 Anderson JAR (1983) The tropical peat swamps of western Malesia. In: Gore AJP (ed) Ecosystems of the World 4B: mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 181–199 Asner GP, Mascaro J, Anderson C, Knapp DE, Martin RE, Kennedy-Bowdoin T, van Breugel M, Davies S, Hall JS, Muller-Landau HC, Potvin C, Sousa W, Wright J, Bermingham E (2013) High-fidelity national carbon mapping for resource management and REDD?. Carbon Balance Manage 8:1–7 Wetlands Ecol Manage (2015) 23:327–346 341 123 Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, SullaMenashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbondensity maps. Nat Clim Change 2:182–185 Baker TR, Chao KJ (2011) Manual for coarse woody debris measurement in RAINFOR plots. http://www.rainfor.org/ upload/ManualsEnglish/CWD_protocol_RAINFOR_2011_ EN.pdf. Accessed 24 Dec 2014 Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, di Fiore A, Martı´nez RV (2004) Increasing biomass in Amazonian forest plots. Philos T R Soc B 359:353–365 Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc Natl Acad Sci USA 106:21213–21218 Ballhorn U, Jubanski J, Siegert F (2011) ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia. Remote Sens 3:1957–1982 Baum A, Rixen T, Samiaji J (2007) Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuar Coast Shelf S 73:563–570 Betbeder J, Gond V, Frappart F, Baghdadi NN, Briant G, Bartholome E (2014) Mapping of Central Africa forested wetlands using remote sensing. IEEE J Sel Top Appl 7(2014):531–542 Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking landatmosphere-stream carbon fluxes in a lowland peatland system. Glob Biogeochem Cycles 18(1):GB1024 Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia. Unpublished PhD thesis, University of British Columbia Buringh P (1984) Organic carbon in soils of the world. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing. Wiley, Chichester, pp 91–109 Bwangoy J-RB, Hansen MC, Roy DP, de Grandi G, Justice CO (2010) Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens Environ 114:73–86 Campbell D (2005) The Congo River basin. In: Fraser LH, Keddy PA (eds) The world’s largest wetlands: ecology and conservation. Cambridge University Press, Cambridge, pp 149–165 Chambers JQ, Higuchi N, Ferreira LV, Melack JM, Schimel JP (2000) Decomposition and carbon cycling of dead trees in tropical forests of the Central Amazon. Oecologia 122:380–388 Chambers FM, Beilman DW, Yu Z (2011) Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat 7, Art. 7. http://www.mires-and-peat.net/pages/ volumes/map07/map0707.php. Accessed 24 Dec 2014 Chave J, Andalo J, Brown S, Cairns MA, Chambers JQ, Eamus D, Fo¨lster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Rie´ra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87–99 Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl Ecol Manage 13:671–684 Chimner RA, Ott CA, Perry CH, Kolka RK (2014) Developing and evaluating rapid field methods to estimate peat carbon. Wetlands. doi:10.1007/s13157-014-0574-6 Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystems of the world, vol 4A., Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 159–224 Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388 Couwenberg J, Hooijer A (2013) Towards robust subsidencebased soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12 Art. 1. http://www.mires-and-peat.net/pages/ volumes/map12/map1201.php. Accessed 24 Dec 2014 Couwenberg J, Dommain R, Joosten H (2010) Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob Change Biol 16:1715–1732 Cubizolle H, Mouandza MM, Muller F (2013) Mires and histosols in French Guiana (South America): new data relating to location and area. Mires Peat 12: Art. 3. http://www. mires-and-peat.net/pages/volumes/map12/map1203.php. Accessed 24 Dec 2014 de Grandi GF, Mayaux P, Rauste Y, Rosenqvist A, Saatchi S, Simard M, Leysen M (1998) Flooded forest mapping at regional scale in the Central Africa Congo River Basin: first thematic results derived by ERS-1 and JERS-1 radar mosaics. Proceedings of the second international workshop on retrieval of bio- and geophysical parameters from SAR data, October 21–23, 1998. ESA, Noordwijk, The Netherlands, pp 253–260 de Grandi GF, Mayaux P, Malingreau JP, Rosenqvist A, Saatchi S, Simard M (2000) New perspectives on global ecosystems from wide-area radar mosaics: flooded forest mapping in the tropics. Int J Remote Sens 21:1235–1249 de Vleeschouwer F, Chambers FM, Swindles GT (2010) Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 7: Art. 1. http://www.mires-and-peat.net/ pages/volumes/map07/map0701.php. Accessed 24 Dec 2014 Dommain R, Couwenberg J, Joosten H (2011) Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat Sci Rev 30:999–1010 Dommain R, Couwenberg J, Glaser PH, Joosten H, Nyoman I, Suryadiputra N (2014) Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat Sci Rev 97:1–32 Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Honorio Coronado EN, La¨hteenoja O, Torres Montenegro L, Valderrama E, Zara´te R, Baker TR (2014) Distribution and carbon stock of West Amazonian peatlands. Env Res Lett 9:124017 Drew WM, Ewel KC, Naylor RL, Sigrah A (2005) A tropical freshwater wetland: III. Direct use values and other goods and services. Wetl Ecol Manage 13:685–693 Englhart S, Jubanski J, Siegert F (2013) Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets. Remote Sens 5:2368–2388 342 Wetlands Ecol Manage (2015) 23:327–346 123 Farmer J, Matthews R, Smith P, Langan C, Hergoualc’h K, Verchot L, Smith JU (2013) Comparison of methods for quantifying soil carbon in tropical peats. Geoderma. doi:10.1016/j.geoderma.2013.09.013 Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJMM, Berry NJ, Bird M, Brondizio ES, de Camargo P, Chave J, Djagbletey G, Domingues TF, Drescher M, Fearnside PM, Franc¸a MB, Fyllas NM, Lopez-Gonzalez G, Hladik A, Higuchi N, Hunter MO, Iida Y, Salim KA, Kassim AR, Keller M, Kemp J, King DA, Lovett JC, Marimon BS, MarimonJunior BH, Lenza E, Marshall AR, Metcalfe DJ, Mitchard ETA, Moran EF, Nelson BW, Nilus R, Nogueira EM, Palace M, Patin˜o S, Peh KS-H, Raventos MT, Reitsma JM, Saiz G, Schrodt F, Sonke´ B, Taedoumg HE, Tan S, White L, Wo¨ll H, Lloyd J (2011) Height–diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106 Fine´r L, Laine J (1998) Root dynamics at drained peatland sites of different fertility in southern Finland. Plant Soil 201:27–36 Franke J, Navratil P, Keuck V, Peterson K, Siegert F (2012) Monitoring fire and selective logging activities in tropical peat swamp forests. IEEE J Sel Top Appl 5:1811–1820 Gallego-Sala AV, Prentice IC (2012) Blanket peat biome endangered by climate change. Nat Clim Change 3: 152–155 Gastaldo RA, Staub JR (1999) A mechanism to explain the preservation of leaf litter lenses in coals derived from raised mires. Palaeogeogr Palaeocl 149:1–14 Gehring C, Zelaraya´n ML, Almeida RB, Moraes FHR (2011) Allometry of the babassu palm growing on a slash-andburn agroecosystem of the eastern periphery of Amazonia. Acta Amazonica 41:127–134 Givelet N, Le Roux G, Cheburkin A, Chen B, Frank J, Goodsite ME, Kempter H, Krachler M, Noernberg T, Rausch N, Rheinberger S, Roos-Barraclough F, Sapkota A, Scholz C, Shotyk W (2004) Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. J Environ Monitor 6:481–492 Glaser PH, Volin JC, Givnish TJ, Hansen BCS, Stricker CA (2012) Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error. J Geophys Res 117:GB3026 Goodman RC, Phillips OL, del Castillo TD, Freitas L, Cortese ST, Monteagudo A, Baker TR (2013) Amazon palm biomass and allometry. For Ecol Manage 310:994–1004 Goodrich JP, Varner RK, Frolking S, Duncan BN, Crill PM (2011) High-frequency measurements of methane ebullition over a growing season at a temperate peatland site. Geophys Res Lett 38:L07404 Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195 Harrison ME (2013) Standard operating procedure: forest litterfall. Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. http://www.outrop.com/uploads/7/2/4/9/ 7249041/litterfall.pdf. Accessed 24 Dec 2014 Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110 Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ 87:404–428 Hirano T, Jauhiainen J, Inoue T, Takahashi H (2009) Controls on the carbon balance of tropical peatlands. Ecosystems 12:873–887 Hirano T, Segah H, Kusin K, Limin S, Takahashi H, OsakiM (2012) Effects of disturbances on the carbon balance of tropical peat swamp forests. Global Change Biol 18:3410–3422 Hirano T, Kusin K, Limin S, Osaki M (2014) Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biol 20:555–565 Hoekman DH (2007) Satellite radar observation of tropical peat swamp forest as a tool for hydrological modelling and environmental protection. Aquat Conserv 17:265–275 Hoekman D, Vissers M (2007) ALOS PALSAR radar observation of tropical peat swamp forest as a monitoring tool for environmental protection and restoration. Proceedings of the IEEE international geoscience and remote sensing symposium, pp 3710–3714 Hooijer A, Page SE, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071 Householder JE, Janovec JP, Tobler MW, Page SE, La¨hteenoja O (2012) Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands 32:359–368 Hoyos J (2014) Controls of carbon turnover in tropical peatlands. Unpublished PhD thesis, University of Nottingham IPCC (2014) Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. IPCC, Switzerland (eds Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG) Iversen CM, Murphy MT, Allen MF, Childs J, Eissenstat DM, Lilleskov EA, Sarjala TM, Sloan VL, Sullivan PF (2012) Advancing the use of minirhizotrons in wetlands. Plant Soil 352:23–39 Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:51–158 Jaenicke J, Wosten H, Budiman A, Siegert F (2010) Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig Adapt Strategies Glob Chang 15:223–239 Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Global Change Biol 11:1788–1797 Jauhiainen J, Limin S, Silvennoinen H, Vasander H (2008) Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89:3503–3514 Jauhiainen J, Hooijer A, Page SE (2012) Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9:617–630 Joosten H, Clarke D (2002) Wise use of mires and peatlands— background and principles including a framework for decision-making. International Mire Conservation Group/ International Peat Society, Finland Joosten H, Tapio-Bistro¨m M-L, Tol S (eds) (2012) Peatlands— guidance for climate change mitigation through Wetlands Ecol Manage (2015) 23:327–346 343 123 conservation, rehabilitation and sustainable use, 2nd edn. Food and Agriculture Organization of the United Nations/ Wetlands International, Rome Jubanski J, Ballhorn U, Kronseder K, Franke J, Siegert F (2013) Detection of large above ground biomass variability in lowland forest ecosystems by airborne LIDAR. Biogeosciences 10:3917–3930 Jung HC, Hamski J, Durand M, Alsdorf D, Hossain F, Lee H, Hussain AKMA, Hasan K, Khan AS, Hoque AKMZ (2010) Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers. Earth Surf Proc Land 35:294–304 Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Coronado ENH, Rı´os M, Lawson IT (2014) The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol Process 28:3373–3387 Koehler AK, Sottocornola M, Kiely G (2011) How strong is the current carbon sequestration of an Atlantic blanket bog? Global Change Biol 17:309–319 Krisnawati H, Adinugroho WC, Imanuddin R (2012) Monograph: allometric models for estimating tree biomass at various forest ecosystem types in Indonesia. Research and Development Center for Conservation and Rehabilitation Forestry Research and Development Agency, Bogor, Indonesia Kronseder K, Ballhorn U, Bo¨hm V, Siegert F (2012) Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LIDAR data. Int J App Earth Obs 18:37–48 La¨hteenoja O, Page S (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Maran˜o´n basin, Peruvian Amazonia. J Geophys Res-Biogeo. doi:10.1029/2010JG0 01508 La¨hteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009a) Amazonian peatlands: an ignored C sink and potential source. Global Change Biol 15:2311–2320 La¨hteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009b) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145 La¨hteenoja O, Rea´tegui YR, Ra¨sa¨nen M, del Castillo TD, Oinonen M, Page SE (2012) The large Amazonian peatland carbon sink in the subsiding Pastaza-Maran˜o´n foreland basin, Peru. Glob Change Biol 18:164–178 La¨hteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in Central Amazonia. Wetlands 33:495–503 Langner A, Miettinen J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biol 13:2329–2340 Larjavaara M, Muller-Landau HC (2011) Cross-section mass: an improved basis for woody debris necromass inventory. Silva Fenn 45:291–298 Lawson IT, Jones TD, Kelly TJ, Coronado ENH, Roucoux KH (2014) The geochemistry of Amazonian peats. Wetlands. doi:10.1007/s13157-014-0552-z Lee G (2000) An analysis of human impact on humid, tropical forests in Jambi, Indonesia using satellite images. Proceedings IGARSS 2000 I-VI, pp 1963–1965 Lee H, Beighley RE, Alsdorf D, Jung HC, Shum CK, Duan J, Guo J, Yamazaki D, Andreadis K (2011) Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ 115:3530–3538 Letcher SG, Chazdon RL (2009) Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica 41:608–617 Lewis SL, Brando PM, Phillips OL, van der Heijden GM, Nepstad D (2011) The 2010 amazon drought. Science 331:554 Li H, Mausel P, Brondizio E, Deardorff D (2010) A framework for creating and validating a non-linear spectrum-biomass model to estimate the secondary succession biomass in moist tropical forests. ISPRS J Photogramm 65:241–254 Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosci Discuss 5:1379–1419 Ma¨kira¨nta P, Minkkinen K, Hyto¨nen J, Laine J (2008) Factors causing temporal and spatial variation in heterotrophic and rhizospheric components of soil respiration in afforested organic soil croplands in Finland. Soil Biol Biochem 40:1592–1600 Malhi Y, Phillips OL, Lloyd J, Baker T, Wright J, Almeida S, Arroyo L, Frederiksen T, Grace J, Higuchi N, Killeen T, Laurance W, Lean˜o C, Lewis S, Meir P, Monteagudo A, Neill D, Vargas PN, Panfil SN, Patin˜o SN, Pitman N, Quesada CA, Rudas A-L, Saloma˜o R, Saleska S, Silva N, Silveira M, Sombroek WG, Valencia R, Martı´nez RV, Vieira ICG, Vinceti B (2002) An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J Veg Sci 13:439–450 Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, Boca Raton Melling L, Hatano R, Goh KJ (2005a) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus 57B:1–11 Melling L, Hatano R, Goh KJ (2005b) Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biol Biochem 37:1445–1453 Metcalfe DB, Meir P, Araga˜o LEOC, Malhi Y, da Costa ACL, Braga A, Gonc¸alves PHL, de Athaydes J, de Almeida SS, Williams M (2007) Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. J Geophys Res-Biogeo 112:G04001 Metcalfe DB, Meir P, Araga˜o LEO, da Costa ACL, Braga AP, Gonc¸alves PHL, de Athaydes JS Jr, de Almeida SS, Dawson LA, Mahli Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199 Miettinen J, Liew SC (2010) Degradation and development of peatlands in peninsular Malaysia and in the islands of Sumatra and Borneo since 1990. Land Degrad Dev 21:285–296 Miettinen J, Hooijer A, Shi C, Tollenaar D, Vernimmen R, Liew SC, Malins C, Page SE (2012) Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. Glob Change Biol Bioenergy 4:908–918 344 Wetlands Ecol Manage (2015) 23:327–346 123 Mitchard ETA, Saatchi SS, White LJT, Abernethy KA, Jeffery KJ, Lewis SL, Collins M, Lefsky MA, Leal ME, Woodhouse IH, Meir P (2012) Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud. Biogeosciences 9:179–191 Mitsch WJ, Nahlik A, Wolski P, Bernal B, Zhang L, Ramberg L (2010) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl Ecol Manage 18:573–586 Moore S, Gauci V, Evans CD, Page SE (2011) Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences 8:901–909 Moore R, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–663 Murdiyarso D, Hergoualc’h K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc Natl Acad Sci USA 107:19655–19660 Nagano T, Osawa K, Ishida T, Sakai K, Vijarnsorn P, Jongskul A, Phetsuk S, Waijaroen S, Yamanoshita T, Norisada M, Kojima K (2013) Subsidence and soil CO2 efflux in tropical peatland in southern Thailand under various water table and management conditions. Mires Peat 11: Art. 6. http:// www.mires-and-peat.net/pages/volumes/map11/map1106. php. Accessed 24 Dec 2014 Neill C (1992) Comparison of soil coring and ingrowth methods for measuring belowground production. Ecology 73: 1918–1921 Nelson DW, Sommers LE, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3—chemical methods. Soil Science Society of America/American Society of Agronomy, Madison, Wisconsin, pp 961–1010 Nepstad DC, Moutinho P, Dias-Filho MB, Davidson E, Cardinot G, Markewitz D, Figueiredo R, Vianna N, Chambers J, Ray D, Guerreiros JB, Lefebvre P, Sternberg L, Moreira M, Barros L, Ishida FY, Tohlver I, Belk E, Kalif K, Schwalbe K (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res-Atmos 107(D20):8085 Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Global Change Biol 14:2317–2332 Nottingham AT, Turner BL, Winter K, van der Heijden MGA, Tanner EVJ (2011) Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol 186:957–967 Page SE, Rieley JO, Shotyk ØW, Weiss D (1999) Interdependence of peat and vegetation in a tropical peat swamp forest. Philos T R Soc B 354:1885–1897 Page SE, Seigert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65 Page SE, Wu¨st RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19:25–635 Page SE, Morrison R, Malins C, Hooijer A, Rieley JO, Jauhianen J (2011a) Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia. White Paper No. 15. International Committee on Clean Transportation (ICTT), Washington DC, p 76 Page SE, Rieley JO, Banks CJ (2011b) Global and regional importance of the tropical peatland carbon pool. Global Change Biol 17:798–818 Pangala SR, Moore S, Hornibrook ERC, Gauci V (2013) Trees are major conduits for methane egress from tropical forested wetlands. New Phytol 197:524–531 Parry LE, West LJ, Holden J, Chapman PJ (2014) Evaluating approaches for estimating peat depth. J Geophys Res Biogeosci 119:567–576 Phillips S, Rouse GE, Bustin RM (1997) Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panama´. Palaeogeogr Palaeoclim Palaeoecol 128:301–338 Phillips OL, Baker TR, Feldpausch T, Brienen R (2009) RAINFOR field manual for plot establishment and remeasurement. http://www.rainfor.org/upload/ManualsEnglish/ RAINFOR_field_manual_version_June_2009_ENG.pdf. Accessed 24 Dec 2014 Phua MH, Tsuyuki S, Lee JS, Sasakawa H (2007) Detection of burned peat swamp forest in a heterogeneous tropical landscape: a case study of the Klias Peninsula, Sabah, Malaysia. Landsc Urban Plan 82:103–116 Pitka¨nen A, Turunen J, Simola H (2011) Comparison of different types of peat corers in volumetric sampling. Suo 62:51–57 Price JS (2003) Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resour Res 39:1241 Qualls RG, Haines BL (1990) The influence of humic substances on the aerobic decomposition of submerged leaf litter. Hydrobiologia 206:133–138 Rakwatin P, Longepe N, Isoguchi O, Shimada M (2009) Potential of ALOS PALSAR 50 m mosaic product for land cover classification in tropical rain forest. Proceedings of the Asian conference on remote sensing (ACRS) Rosenqvist A˚ , Birkett CM (2002) Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin. Int J Remote Sens 23:1283–1302 Roucoux KH, Lawson IT, Jones TD, Baker TR, Coronado EN, Gosling WD, La¨hteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoecol 374:242–255 Roulet NT, Lafleurs PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biol 13:397–411 Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904 Sheng Y, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M, Beilman DW, Dubinin P (2004) Wetlands Ecol Manage (2015) 23:327–346 345 123 A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Glob Biogeochem Cycles 18:GB3004 Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53:249–267 Shimamura T, Momose K (2005) Organic matter dynamics control plant species coexistence in a tropical peat swamp forest. Philos T R Soc B272:1503–1510 Sjo¨gersten S, Cheesman AW, Lopez O, Turner BL (2011) Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–163 Sjo¨gersten S, Black CR, Evers S, Hoyos-Santillan J, Wright EL, Turner BL (2014) Tropical wetlands: a missing link in the global carbon cycle? Glob Biogeochem Cycles. doi:10. 1002/2014GB004844 Slater LD, Reeve A (2002) Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics 67:365–378 Sulistiyanto Y (2004) Nutrient dynamics in different sub-types of peat swamp forest in Central Kalimantan, Indonesia. Unpublished PhD thesis, University of Nottingham Sundari S, Hirano T, Yamada H, Kusin K, Limin S (2012) Effect of groundwater level on soil respiration in tropical peat swamp forests. J Agric Meteorol 68:121–134 Suzuki S, Ishida T, Nagano T, Waijaroen S (1999) Influences of deforestation on carbon balance in a natural tropical peat swamp forest in Thailand. Environ Control Biol 37:115–128 Symbula M, Day FP Jr (1988) Evaluation of two methods for estimating belowground production in a freshwater swamp forest. Am Midl Nat 120:405–415 Tie YL, Esterle JS (1992) Formation of lowland peat domes in Sarawak, Malaysia. In: Aminuddin BY, Tan SL, Aziz B, Samy J, Salmah Z, Siti Petimah H, Choo ST (eds) Proceedings of the international symposium on tropical peatland, 6–10 May 1991, Kuching, Sarawak, Malaysia. Kuala Lumpur: Malaysian Agricultural Research and Development Institute, pp 81–89 Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. Holocene 12:69–80 van Asselen S, Roosendaal C (2009) A new method for determining the bulk density of uncompacted peat from field settings. J Sediment Res 79:918–922 Vasander H, Kettunen A (2006) Carbon in boreal peatlands. In: Wieder RK, Vitt DH (eds) Ecological studies, vol 188., Boreal peatland ecosystemsSpringer, Berlin, pp 165–194 Waddell KL (2002) Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Indic 1:139–153 Wahyunto, Ritung S, Subagjo H (2003) Peta Luas Sebaran Lahan Gambut dan Kandungan Kargon di Pulau Sumatera/ maps of area of peatland distribution and carbon content in Sumatera, 1990–2002. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), Bogor Wahyunto, Ritung S, Subagjo H (2004) Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Kalimantan/Map of Peatland Distribution Area and Carbon Content in Kalimantan, 2000–2002. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), Bogor Wahyunto, Heryanto B, Widiastuti HBdF (2006) Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Papua/ Maps of Peatland Distribution, Area and Carbon Content in Papua, 2000–2001. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), Bogor Waldram MS (2014) Characterising disturbance in tropical peat swamp forest using satellite imaging radar. Unpublished PhD thesis. University of Leicester. http://hdl.handle.net/ 2381/28631. Accessed 24 Dec 2014 Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc’h K, Kurnianito S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485 Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203 Wijedasa LS, Lahiru S, Sloan S, Michelakis D, Clements GR (2012) Overcoming limitations with Landsat imagery for mapping of peat swamp forests in Sundaland. Remote Sens 4:2595–2618 Woodall CW, Monleon VJ (2008) Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program. USDA Forest Service, Newtown Square, Pennsylvania Wright HE Jr (1991) Coring tips. J Paleolimnol 6:37–49 Wright HE, Mann DH, Glaser PH (1984) Piston corers for peat and lake sediments. Ecology 65:657–659 Wright EL, Black CR, Cheesman AW, Drage T, Large D, Turner BL, Sjo¨gersten S (2011) Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland. Global Change Biol 17:2867–2881 Wright EL, Black CR, Cheesman AW, Turner BL, Sjo¨gersten S (2013a) Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a neotropical peatland. Wetlands 33:217–226 Wright EL, Black CR, Turner BL, Sjo¨gersten S (2013b) Diurnal and seasonal variation in CO2 and CH4 fluxes in a neotropical peatland. Global Change Biol. doi:10.1111/gcb.12330 Wu¨st RA, Bustin RM (2004) Late Pleistocene and Holocene development of the interior peat-accumulating basin of tropical Tasek Bera, Peninsular Malaysia. Palaeogeogr Palaeoclim 211:241–270 Wu¨st RA, Ward CR, Bustin RM, Hawke MI (2002) Characterization and quantification of inorganic constituents of tropical peats and organic-rich deposits from Tasek Bera (Peninsular Malaysia): implications for coals. Int J Coal Geol 49:215–249 Wu¨st RA, Bustin RM, Lavkulich LM (2003) New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 53:133–163 Yoshioka T, Ueda S, Miyajima T, Wada E, Yoshida N, Sugimoto A, Vijarnsorn P, Boonprakub S (2002) Biogeochemical properties of a tropical swamp forest ecosystem in southern Thailand. Limnology 3:51–59 Yu Z (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085 Yule CM, Gomez LN (2008) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetl Ecol Manage 17:231–241
PY - 2015/6/30
Y1 - 2015/6/30
N2 - Our limited knowledge of the size of the carbon pool and exchange fluxes in forested lowland tropical peatlands represents a major gap in our understanding of the global carbon cycle. Peat deposits in several regions (e.g. the Congo Basin, much of Amazonia) are only just beginning to be mapped and characterised. Here we consider the extent to which methodological improvements and improved coordination between researchers could help to fill this gap. We review the literature on measurement of the key parameters required to calculate carbon pools and fluxes, including peatland area, peat bulk density, carbon concentration, above-ground carbon stocks, litter inputs to the peat, gaseous carbon exchange, and waterborne carbon fluxes. We identify areas where further research and better coordination are particularly needed in order to reduce the uncertainties in estimates of tropical peatland carbon pools and fluxes, thereby facilitating better-informed management of these exceptionally carbon-rich ecosystems.
AB - Our limited knowledge of the size of the carbon pool and exchange fluxes in forested lowland tropical peatlands represents a major gap in our understanding of the global carbon cycle. Peat deposits in several regions (e.g. the Congo Basin, much of Amazonia) are only just beginning to be mapped and characterised. Here we consider the extent to which methodological improvements and improved coordination between researchers could help to fill this gap. We review the literature on measurement of the key parameters required to calculate carbon pools and fluxes, including peatland area, peat bulk density, carbon concentration, above-ground carbon stocks, litter inputs to the peat, gaseous carbon exchange, and waterborne carbon fluxes. We identify areas where further research and better coordination are particularly needed in order to reduce the uncertainties in estimates of tropical peatland carbon pools and fluxes, thereby facilitating better-informed management of these exceptionally carbon-rich ecosystems.
KW - Peat
KW - Greenhouse gases
KW - Remote sensing
KW - Tropical ecology
KW - Carbon cycle
U2 - 10.1007/s11273-014-9402-2
DO - 10.1007/s11273-014-9402-2
M3 - Article (journal)
SN - 0923-4861
VL - 23
SP - 327
EP - 346
JO - Wetlands Ecology and Management
JF - Wetlands Ecology and Management
IS - 3
ER -