Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system

Irene Delgado-Fernandez, Derek W T Jackson, J Andrew G Cooper, Andreas C W Baas, J H Meiring Beyers, Kevin Lynch

Research output: Contribution to journalArticle

25 Citations (Scopus)
4 Downloads (Pure)

Abstract

Characterization of three-dimensional airflow remains elusive within a variety of environments, and is particularly challenging over complex dune topography. Previous work examining airflow over and in the lee of dunes has been restricted to two-dimensional studies and has concentrated on dune shapes containing angle of repose lee sides only. However, the presence of vegetation in coastal dunes creates topographic differences and irregular shapes that interfere with flow separation at the crest and significantly modify lee-side airflow patterns and potential transport. This paper presents the first three-dimensional field characterisation of airflow patterns at the lee-side of a subaerial dune. Flow information was obtained using an array of 3D ultrasonic anemometers deployed over a beach surface during 7 offshore wind events. Data were used to measure cross-shore and alongshore lee-side airflow patterns using the three dimensions of the wind vector. Distances to re-attachment were similar to previous studies but the range of transverse incident wind directions resulting in flow separation (0+/-35°) was almost twice that previously reported (0+/-20°). Airflow reversal took place with winds as slow as 1 m s-1.Transverse offshore winds generated areas of opposing wind directions both within the reversed zone and beyond re-attachment, contrary to consistent deflection in only one directionfound in transverse desert dunes. Patterns of flow convergence-divergence have been reported in fluvial studies. However, while convergence was associated with weak reversal in fluvial settings it appeared to be related to strong flow reversal here and could be produced by pressure differentials at the dune crest.
Original languageEnglish
Pages (from-to)706-721
JournalJournal of Geophysical Research: Earth Surface
Volume118
Issue number2
DOIs
Publication statusPublished - Jun 2013

Fingerprint

airflow
dune
beach
wind direction
anemometer
deflection
desert
divergence
topography
vegetation

Cite this

Delgado-Fernandez, Irene ; Jackson, Derek W T ; Cooper, J Andrew G ; Baas, Andreas C W ; Beyers, J H Meiring ; Lynch, Kevin. / Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system. In: Journal of Geophysical Research: Earth Surface. 2013 ; Vol. 118, No. 2. pp. 706-721.
@article{11f12e17334d4fe1af494217bc936939,
title = "Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system",
abstract = "Characterization of three-dimensional airflow remains elusive within a variety of environments, and is particularly challenging over complex dune topography. Previous work examining airflow over and in the lee of dunes has been restricted to two-dimensional studies and has concentrated on dune shapes containing angle of repose lee sides only. However, the presence of vegetation in coastal dunes creates topographic differences and irregular shapes that interfere with flow separation at the crest and significantly modify lee-side airflow patterns and potential transport. This paper presents the first three-dimensional field characterisation of airflow patterns at the lee-side of a subaerial dune. Flow information was obtained using an array of 3D ultrasonic anemometers deployed over a beach surface during 7 offshore wind events. Data were used to measure cross-shore and alongshore lee-side airflow patterns using the three dimensions of the wind vector. Distances to re-attachment were similar to previous studies but the range of transverse incident wind directions resulting in flow separation (0+/-35°) was almost twice that previously reported (0+/-20°). Airflow reversal took place with winds as slow as 1 m s-1.Transverse offshore winds generated areas of opposing wind directions both within the reversed zone and beyond re-attachment, contrary to consistent deflection in only one directionfound in transverse desert dunes. Patterns of flow convergence-divergence have been reported in fluvial studies. However, while convergence was associated with weak reversal in fluvial settings it appeared to be related to strong flow reversal here and could be produced by pressure differentials at the dune crest.",
author = "Irene Delgado-Fernandez and Jackson, {Derek W T} and Cooper, {J Andrew G} and Baas, {Andreas C W} and Beyers, {J H Meiring} and Kevin Lynch",
year = "2013",
month = "6",
doi = "10.1002/jgrf.20036",
language = "English",
volume = "118",
pages = "706--721",
journal = "Journal of Geophysical Research: Earth Surface",
issn = "2169-9011",
publisher = "American Geophysical Union",
number = "2",

}

Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system. / Delgado-Fernandez, Irene; Jackson, Derek W T; Cooper, J Andrew G; Baas, Andreas C W; Beyers, J H Meiring; Lynch, Kevin.

In: Journal of Geophysical Research: Earth Surface, Vol. 118, No. 2, 06.2013, p. 706-721.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system

AU - Delgado-Fernandez, Irene

AU - Jackson, Derek W T

AU - Cooper, J Andrew G

AU - Baas, Andreas C W

AU - Beyers, J H Meiring

AU - Lynch, Kevin

PY - 2013/6

Y1 - 2013/6

N2 - Characterization of three-dimensional airflow remains elusive within a variety of environments, and is particularly challenging over complex dune topography. Previous work examining airflow over and in the lee of dunes has been restricted to two-dimensional studies and has concentrated on dune shapes containing angle of repose lee sides only. However, the presence of vegetation in coastal dunes creates topographic differences and irregular shapes that interfere with flow separation at the crest and significantly modify lee-side airflow patterns and potential transport. This paper presents the first three-dimensional field characterisation of airflow patterns at the lee-side of a subaerial dune. Flow information was obtained using an array of 3D ultrasonic anemometers deployed over a beach surface during 7 offshore wind events. Data were used to measure cross-shore and alongshore lee-side airflow patterns using the three dimensions of the wind vector. Distances to re-attachment were similar to previous studies but the range of transverse incident wind directions resulting in flow separation (0+/-35°) was almost twice that previously reported (0+/-20°). Airflow reversal took place with winds as slow as 1 m s-1.Transverse offshore winds generated areas of opposing wind directions both within the reversed zone and beyond re-attachment, contrary to consistent deflection in only one directionfound in transverse desert dunes. Patterns of flow convergence-divergence have been reported in fluvial studies. However, while convergence was associated with weak reversal in fluvial settings it appeared to be related to strong flow reversal here and could be produced by pressure differentials at the dune crest.

AB - Characterization of three-dimensional airflow remains elusive within a variety of environments, and is particularly challenging over complex dune topography. Previous work examining airflow over and in the lee of dunes has been restricted to two-dimensional studies and has concentrated on dune shapes containing angle of repose lee sides only. However, the presence of vegetation in coastal dunes creates topographic differences and irregular shapes that interfere with flow separation at the crest and significantly modify lee-side airflow patterns and potential transport. This paper presents the first three-dimensional field characterisation of airflow patterns at the lee-side of a subaerial dune. Flow information was obtained using an array of 3D ultrasonic anemometers deployed over a beach surface during 7 offshore wind events. Data were used to measure cross-shore and alongshore lee-side airflow patterns using the three dimensions of the wind vector. Distances to re-attachment were similar to previous studies but the range of transverse incident wind directions resulting in flow separation (0+/-35°) was almost twice that previously reported (0+/-20°). Airflow reversal took place with winds as slow as 1 m s-1.Transverse offshore winds generated areas of opposing wind directions both within the reversed zone and beyond re-attachment, contrary to consistent deflection in only one directionfound in transverse desert dunes. Patterns of flow convergence-divergence have been reported in fluvial studies. However, while convergence was associated with weak reversal in fluvial settings it appeared to be related to strong flow reversal here and could be produced by pressure differentials at the dune crest.

U2 - 10.1002/jgrf.20036

DO - 10.1002/jgrf.20036

M3 - Article

VL - 118

SP - 706

EP - 721

JO - Journal of Geophysical Research: Earth Surface

JF - Journal of Geophysical Research: Earth Surface

SN - 2169-9011

IS - 2

ER -