Extending latent semantic analysis to manage its syntactic blindness

YANNIS KORKONTZELOS*, RAJA MUHAMMAD SULEMAN

*Corresponding author for this work

Research output: Contribution to journalArticle (journal)peer-review

22 Citations (Scopus)
158 Downloads (Pure)

Abstract

Natural Language Processing (NLP) is the sub-field of Artificial Intelligence that represents and analyses human language automatically. NLP has been employed in many applications, such as information retrieval, information processing and automated answer ranking. Semantic analysis focuses on understanding the meaning of text. Among other proposed approaches, Latent Semantic Analysis (LSA) is a widely used corpus-based approach that evaluates similarity of text based on the semantic relations among words. LSA has been applied successfully in diverse language systems for calculating the semantic similarity of texts. LSA ignores the structure of sentences, i.e., it suffers from a syntactic blindness problem. LSA fails to distinguish between sentences that contain semantically similar words but have opposite meanings. Disregarding sentence structure, LSA cannot differentiate between a sentence and a list of keywords. If the list and the sentence contain similar words, comparing them using LSA would lead to a high similarity score. In this paper, we propose xLSA, an extension of LSA that focuses on the syntactic structure of sentences to overcome the syntactic blindness problem of the original LSA approach. xLSA was tested on sentence pairs that contain similar words but have significantly different meaning. Our results showed that xLSA alleviates the syntactic blindness problem, providing more realistic semantic similarity scores.
Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalExpert Systems with Applications
Volume165
Issue number114130
Early online date24 Oct 2020
DOIs
Publication statusPublished - 1 Mar 2021

Keywords

  • Natural Language Processing
  • Natural Language Understanding
  • Latent Semantic Analysis
  • Semantic Similarity

Fingerprint

Dive into the research topics of 'Extending latent semantic analysis to manage its syntactic blindness'. Together they form a unique fingerprint.

Cite this