Abstract
Descriptive document clustering aims to automatically discover groups of semantically
related documents and to assign a meaningful label to characterise the content of each cluster. In this paper, we present a descriptive clustering approach that employs a distributed representation model, namely the paragraph vector model, to capture semantic similarities between documents and phrases. The proposed method uses a joint representation of phrases and documents (i.e., a coembedding) to automatically select a descriptive phrase that best represents each document cluster. We evaluate our method by comparing its performance to an existing state-of-the-art descriptive clustering method that also uses co-embedding but relies on a bag-of-words representation. Results obtained on benchmark datasets demonstrate that the paragraph vector-based method obtains superior performance over the existing approach in both identifying clusters and assigning appropriate descriptive labels to them.
Original language | English |
---|---|
DOIs | |
Publication status | Accepted/In press - 3 Dec 2016 |
Event | 15th Conference of the European Chapter of the Association for Computational Linguistics - Valencia, Spain Duration: 3 Apr 2017 → 7 Apr 2017 |
Conference
Conference | 15th Conference of the European Chapter of the Association for Computational Linguistics |
---|---|
Country/Territory | Spain |
City | Valencia |
Period | 3/04/17 → 7/04/17 |