TY - JOUR
T1 - CLOTHO: A Large-Scale Internet of Things based Crowd Evacuation Planning System for Disaster Management
AU - Xu, Xialong
AU - Zhang, Lei
AU - Sotiriadis, Stelios
AU - Asimakopoulou, Eleana
AU - Bessis, Nik
AU - Li, Maozhen
PY - 2018/10/1
Y1 - 2018/10/1
N2 - In recent years, different kinds of natural hazards or man-made disasters happened that were diversified and difficult to control with heavy casualties. In this work, we focus on the rapid and systematic evacuation of large-scale densities of people after disasters in order to reduce loss in an effective manner. The optimal evacuation planning is a key challenge and becomes a hotspot of research and development. We design our system based on an Internet of Things (IoT) scenario that utilizes a mobile Cloud computing platform in order to develop the Crowd Lives Oriented Track and Help Optimizition system (CLOTHO) that is an evacuation planning system for large-scale densities of people in disasters. CLOTHO includes the mobile terminal (IoT side) for data collection and the Cloud backend system for storage and analytics. We build our solution upon a typical IoT/fog disaster management scenario and we propose an IoT application based on an evacuation planning algorithm based on the artificial potential Field (APF), which is the core of CLOTHO. APF is conceptualized as an IoT service, and can determine the direction of evacuation automatically according to the gradient direction of the potential field, suitable for rapid evacuation of large population. People are usually in panic, which easily causes the chaos of evacuation and brings secondary disasters. Based on APF, we propose the evacuation planning algorithm based on artificial potential field with relationship attraction (APFRA). APF-RA guides the evacuees with relationship to move to the same shelter as much as possible, to calm evacuees and realize a more humanitarian evacuation. The experimental results show that CLOTHO (using APF and APF-RA) can effectively improve convergence rate, shorten the evacuation route length and evacuation time, and make the remaining capacity of the surrounding shelters balanced. Furthermore, CLOTHO aims to bring evacuees the same shelter if possible and appropriate.
AB - In recent years, different kinds of natural hazards or man-made disasters happened that were diversified and difficult to control with heavy casualties. In this work, we focus on the rapid and systematic evacuation of large-scale densities of people after disasters in order to reduce loss in an effective manner. The optimal evacuation planning is a key challenge and becomes a hotspot of research and development. We design our system based on an Internet of Things (IoT) scenario that utilizes a mobile Cloud computing platform in order to develop the Crowd Lives Oriented Track and Help Optimizition system (CLOTHO) that is an evacuation planning system for large-scale densities of people in disasters. CLOTHO includes the mobile terminal (IoT side) for data collection and the Cloud backend system for storage and analytics. We build our solution upon a typical IoT/fog disaster management scenario and we propose an IoT application based on an evacuation planning algorithm based on the artificial potential Field (APF), which is the core of CLOTHO. APF is conceptualized as an IoT service, and can determine the direction of evacuation automatically according to the gradient direction of the potential field, suitable for rapid evacuation of large population. People are usually in panic, which easily causes the chaos of evacuation and brings secondary disasters. Based on APF, we propose the evacuation planning algorithm based on artificial potential field with relationship attraction (APFRA). APF-RA guides the evacuees with relationship to move to the same shelter as much as possible, to calm evacuees and realize a more humanitarian evacuation. The experimental results show that CLOTHO (using APF and APF-RA) can effectively improve convergence rate, shorten the evacuation route length and evacuation time, and make the remaining capacity of the surrounding shelters balanced. Furthermore, CLOTHO aims to bring evacuees the same shelter if possible and appropriate.
KW - Internet of Things
KW - evacuation planning
KW - artificial potential field
KW - relationship attraction
KW - disaster.
KW - Internet of Things (IoT)
KW - Artificial potential field (APF)
KW - disaster evacuation planning
UR - http://www.scopus.com/inward/record.url?scp=85044383661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044383661&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/8810153f-f430-3e2b-9cd5-8ac5f6ae9351/
U2 - 10.1109/JIOT.2018.2818885
DO - 10.1109/JIOT.2018.2818885
M3 - Article (journal)
VL - 5
SP - 3559
EP - 3568
JO - IEEE Internet of Things Journal
JF - IEEE Internet of Things Journal
SN - 2327-4662
IS - 5
M1 - 8323187
ER -