Caste‐and pesticide‐specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees

Thomas J. Colgan, Isabel K. Fletcher, ANDRES ARCE, Richard J. Gill, Ana Ramos Rodrigues, Eckart Stolle, Lars Chittka, Yannick Wurm

Research output: Contribution to journalArticle (journal)peer-review

54 Citations (Scopus)
9 Downloads (Pure)

Abstract

Social bees are important insect pollinators of wildflowers and agricultural crops, making their reported declines a global concern. A major factor implicated in these declines is the widespread use of neonicotinoid pesticides. Indeed, recent research has demonstrated that exposure to low doses of these neurotoxic pesticides impairs bee behaviours important for colony function and survival. However, our understanding of the molecular-genetic pathways that lead to such effects is limited, as is our knowledge of how effects may differ between colony members. To understand what genes and pathways are affected by exposure of bumblebee workers and queens to neonicotinoid pesticides, we implemented a transcriptome-wide gene expression study. We chronically exposed Bombus terrestriscolonies to either clothianidin or imidacloprid at field-realistic concentrations while controlling for factors including colony social environment and worker age. We reveal that genes involved in important biological processes including mitochondrial function are differentially expressed in response to neonicotinoid exposure. Additionally, clothianidin exposure had stronger effects on gene expression amplitude and alternative splicing than imidacloprid. Finally, exposure affected workers more strongly than queens. Our work demonstrates how RNA-Seq transcriptome profiling can provide detailed novel insight on the mechanisms mediating pesticide toxicity to a key insect pollinator.

Original languageEnglish
Pages (from-to)1964-1974
Number of pages11
JournalMolecular Ecology
Volume28
Issue number8
DOIs
Publication statusPublished - 30 Apr 2019

Keywords

  • ecotoxicology
  • molecular diagnostics
  • neonicotinoid insecticides
  • nicotinic acetylcholine receptors
  • pollinator health
  • xenobiotics
  • Bees/drug effects
  • Pollination/drug effects
  • Animals
  • Behavior, Animal/drug effects
  • Neonicotinoids/adverse effects
  • Crops, Agricultural
  • Pesticides/adverse effects
  • Gene Expression Regulation/drug effects

Fingerprint

Dive into the research topics of 'Caste‐and pesticide‐specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees'. Together they form a unique fingerprint.

Cite this