TY - JOUR
T1 - A Review on Traditional Machine Learning and Deep Learning Models for WBCs Classification in Blood Smear Images
AU - Khan, Siraj
AU - Sajjad, Muhammad
AU - Hussain, Tanveer
AU - Ullah, Amin
AU - Imran, Ali Shariq
PY - 2020/12/30
Y1 - 2020/12/30
N2 - In computer vision, traditional machine learning (TML) and deep learning (DL) methods have significantly contributed to the advancements of medical image analysis (MIA) by enhancing prediction accuracy, leading to appropriate planning and diagnosis. These methods substantially improved the diagnoses of automatic brain tumor and leukemia/blood cancer detection and can assist the hematologist and doctors by providing a second opinion. This review provides an in-depth analysis of available TML and DL techniques for MIA with a significant focus on leukocytes classification in blood smear images and other medical imaging domains, i.e., magnetic resonance imaging (MRI), CT images, X-ray, and ultrasounds. The proposed review's main impact is to find the most suitable TML and DL techniques in MIA, especially for leukocyte classification in blood smear images. The advanced DL techniques, particularly the evolving convolutional neural networks-based models in the MIA domain, are deeply investigated in this review article. The related literature study reveals that mainstream TML methods are vastly applied to microscopic blood smear images for white blood cells (WBC) analysis. They provide valuable information to medical specialists and help diagnose various hematic diseases such as AIDS and blood cancer (Leukaemia). Based on WBC related literature study and its extensive analysis presented in this study, we derive future research directions for scientists and practitioners working in the MIA domain.
AB - In computer vision, traditional machine learning (TML) and deep learning (DL) methods have significantly contributed to the advancements of medical image analysis (MIA) by enhancing prediction accuracy, leading to appropriate planning and diagnosis. These methods substantially improved the diagnoses of automatic brain tumor and leukemia/blood cancer detection and can assist the hematologist and doctors by providing a second opinion. This review provides an in-depth analysis of available TML and DL techniques for MIA with a significant focus on leukocytes classification in blood smear images and other medical imaging domains, i.e., magnetic resonance imaging (MRI), CT images, X-ray, and ultrasounds. The proposed review's main impact is to find the most suitable TML and DL techniques in MIA, especially for leukocyte classification in blood smear images. The advanced DL techniques, particularly the evolving convolutional neural networks-based models in the MIA domain, are deeply investigated in this review article. The related literature study reveals that mainstream TML methods are vastly applied to microscopic blood smear images for white blood cells (WBC) analysis. They provide valuable information to medical specialists and help diagnose various hematic diseases such as AIDS and blood cancer (Leukaemia). Based on WBC related literature study and its extensive analysis presented in this study, we derive future research directions for scientists and practitioners working in the MIA domain.
KW - Blood Smear Images
KW - CNN
KW - deep learning
KW - medical image analysis
KW - traditional machine learning
KW - WBCs Classification
UR - https://doi.org/10.1109/ACCESS.2020.3048172
U2 - 10.1109/ACCESS.2020.3048172
DO - 10.1109/ACCESS.2020.3048172
M3 - Article (journal)
SN - 2169-3536
VL - 9
SP - 10657
EP - 10673
JO - IEEE Access
JF - IEEE Access
ER -