Abstract
Original language | English |
---|---|
Pages (from-to) | 176-183 |
Number of pages | 8 |
Journal | Applied Geography |
Volume | 55 |
Early online date | 30 Sept 2014 |
DOIs | |
Publication status | Published - 1 Dec 2014 |
Keywords
- Echinococcus multilocularis
- Ochotona
- Remote sensing
- Random forests
- Landscape metrics
- Classification
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'A random forest approach for predicting the presence of Echinococcus multilocularis intermediate host Ochotona spp. presence in relation to landscape characteristics in western China'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Applied Geography, Vol. 55, 01.12.2014, p. 176-183.
Research output: Contribution to journal › Article (journal) › peer-review
TY - JOUR
T1 - A random forest approach for predicting the presence of Echinococcus multilocularis intermediate host Ochotona spp. presence in relation to landscape characteristics in western China
AU - Marston, Christopher
AU - Danson, F. Mark
AU - Armitage, Richard P.
AU - Giraudoux, Patrick
AU - Pleydell, David R.J.
AU - Wang, Qian
AU - Qiu, Jaimin
AU - Craig, Philip S.
N1 - Abdel-Rahman, E. M., Ahmed, F. B., & Ismail, R. (2013). Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. International Journal of Remote Sensing, 34, 712e728. Arthur, A. D., Pech, R. P., Davey, C., Jiebu, Yanming, Z., & Hui, L. (2008). Livestock grazing, plateau pikas and the conservation of avian biodiversity on the Tibetan plateau. Biological Conservation, 141, 1972e1981. Breiman, L. (2001). Random forests. Machine Learning, 45, 5e32. Budke, C. M., Campos-Ponce, M., Wang, Q., & Torgerson, P. R. (2005). A canine purgation study and risk factor analysis for echinococcosis in a high endemic region of the Tibetan plateau. Veterinary Parasitology, 127, 43e49. Craig, P. S., Giraudoux, P., Shi, D., Bartholomot, B., Barnish, G., Delattre, P., et al. (2000). An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China. Acta Tropica, 77, 167e177. Craig, P. S., Liu, D., Shi, D., Macpherson, C. N. L., Barnish, G., Reynolds, D., et al.Gottstein, B., & Wang, Z. (1992). A large focus of alveolar echinococcosis in central China. Lancet, 340, 826e831. Danson, F. M., Craig, P. S., Man, W., Shi, D. Z., & Giraudoux, P. (2004). Landscape dynamics and risk modelling of human alveolar echinococcosis. Photogrammetric Engineering & Remote Sensing, 70, 359e366. Danson, F. M., Graham, A. J., Pleydell, D. R. J., Campos-Ponce, M., Giraudoux, P., & Craig, P. S. (2003). Multi-scale spatial analysis of human alveolar echinococcosis risk in China. Parasitology, 127, S133eS141. Duro, D. C., Franklin, S. E., & Dube, M. G. (2012). Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. International Journal of Remote Sensing, 33, 4502e4526. Eckert, J. (1996). In J. Uchino, & N. Sato (Eds.), Echinococcus multilocularis and alveolar echinococcosis in Europe (except parts of Eastern Europe). Alveolar Echinococcosis. Strategy for eradication of alveolar echinococcosis of the liver (pp. 27e43). Sapporo: Fuji Shoin. Eckert, J., Gemmell, M. A., Meslin, F. X., & Pawlowski, Z. S. (2001). WHO/IOE manual on Echinococcosis in humans and animals: A public health problem of global concern. Paris: OIE/WHO. Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487e515. Giraudoux, P., Craig, P. S., Delattre, P., Bao, G., Bartholomot, B., Harraga, S., et al. (2003). Interactions between landscape changes and host communities can regulate Echinococcus multilocularis transmission. Parasitology, 127, S121eS131. Giraudoux, P., Delattre, P., Habert, M., Qu�er�e, J. P., Deblay, S., Defaut, R., et al. (1997). Population dynamics of fossorial water vole (Arvicola terrestris scherman): a land use and landscape perspective. Agriculture, Ecosystems & Environment, 66,47e60. Giraudoux, P., Pleydell, D. R. J., Raoul, F., Qu�er�e, J. P., Wang, Q., Yang, Y., et al. (2006). Transmission ecology of Echinococcus multilocularis: what are the ranges of parasite stability among various host communities in China. Parasitology International, 55, S237eS246. Giraudoux, P., Qu�er�e, J. P., Delattre, P., Bao, G., Wang, X., Shi, D., et al. (1998). Distribution of small mammals along a deforestation gradient in south Gansu, China. Acta Theriol, 43, 349e362. Giraudoux, P., Raoul, F., Afonso, E., Ziadinov, I., Yang, Y., Li, L., et al. (2013). Transmission ecosystems of Echinococcus multilocularis in China and Central Asia. Parasitology, 140, 1655e1666. Giraudoux, P., Raoul, F., Pleydell, D. R. J., Li, T., Han, X., Qui, J., et al. (2013). Drivers of Echinococcus multilocularis transmission in China: small mammal diversity, landscape or climate? PLoS Neglected Tropical Diseases, 7, 1e12. Jiapeng, Q.,Wenjing, L., Min, Y.,Weihong, J., & Yanming, Z. (2013). Life history of the plateau pika (Ochotona curzoniae) in alpine meadows of the Tibetan Plateau. Mammalian Biology, 78, 68e72. Li, T., Chen, X., Zhen, R., Qiu, J., Qiu, D., Xiao, N., et al. (2010). Widespread coendemicity of human cystic and alveolar echinococcosis on the eastern Tibetan Plateau, northwest Sichuan/southeast Qinghai, China. Acta Tropica, 113, 248e256. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2, 18e22. Lidicker, W. Z. (1995). Landscape approaches in Mammalian Ecology and Conservation. Minneapolis: University of Minnesota Press. McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). FRAGSTATS: Spatial Pattern Analysis Program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at: the following web site www.umass.edu/landeco/research/fragstats/fragstats.html. Moss, J. E., Chen, X., Li, T., Qiu, J., Wang, Q., Giraudoux, P., et al. (2013). Reinfection studies of canine echinococcosis and role of dogs in transmission of Echinococcus multilocularis in Tibetan communities, Sichuan, China. Parasitology, 28, 1e8. Perdiguero-Alonso, D., Montero, F. E., Kostadinova, A., Raga, J. A., & Barrett, J. (2008). Random forests, a novel approach for discrimination of fish populations using parasites as biological tags. International Journal for Parasitology, 38, 1425e1434. Pleydell, D. R. J., & Chr�etien, S. (2010). Mixtures of GAMs for habitat suitability analysis with overdispersed presence/absence data. Computational Statistics & Data Analysis, 54, 1405e1418. Pleydell, D. R. J., Yang, Y. R., Danson, F. M., Raoul, F., Craig, P. S., McManus, D. P., et al. (2008). Landscape composition and spatial prediction of Alveolar Echinococcosis in Southern Ningxia, China. PLoS Neglected Tropical Diseases, 2, e287. Raoul, F., Deplazes, P., Nonaka, N., Piarroux, R., Vuitton, D. A., & Giraudoux, P. (2001). Assessment of the epidemiological status of Echinococcus multilocularis in foxes in France using ELISA coprotests on fox faeces collected in the field. International Journal for Parasitology, 31, 1579e1588. Raoul, F., Pleydell, D. R. J., Qu�er�e, J. P., Vaniscotte, A., Rieffel, D., Takahashi, K., et al. (2008). Small-mammal assemblage response to deforestation and afforestation in central China. Mammalia, 72, 320e332. Raoul, F., Qu�er�e, J. P., Rieffel, D., Bernard, N., Takahashi, K., Scheifler, R., et al. (2006). Distribution of small mammals along a grazing gradient on the Tibetan plateau of western Sichuan, China. Mammalia, 42, 214e225. Rausch, R. L. (1995). Life cycle patterns and geographic distribution of Echinococcus species. In R. C. A. Thompson, & A. J. Lymbery (Eds.), Echinococcus and hydatid disease (pp. 89e134). Wallingford: Cab International. Rhodes, J. R., McAlpine, C. A., Zuur, A. F., Smith, G. M., & Ieno, E. N. (2009). In A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, & G. M. Smith (Eds.), GLMM applied on the spatial distribution of Koalas in a fragmented landscape. Mixed effects models and extensions in ecology with R (pp. 469e492). New York: Springer. Riitters, K. H., O'Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H., Timmins, S. P., et al. (1995). A factor analysis of landscape pattern and structure metrics. Landscape Ecology, 10, 23e39. Smith, A. T., & Gao, W. X. (1991). Social relationships of Adult Black-Lipped Pikas (Ochotona curzoniae). Journal of Mammalogy, 72, 231e247. Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9, 307. Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random Forests: a classification and regression tool for compound classification and QSARmodeling. Journal of Chemical Information and Modeling, 43,1947e1958. USGS. (2004). Shuttle Radar Topography Mission, 1 Arc Second scene SRTM_ n33_ e097. Unfilled Unfinished 2.0, Global Land Cover Facility. College Park, Maryland: University of Maryland. February 2000. Wang, Q., Qiu, J. M., Schantz, P. M., He, J. G., Ito, A., & Liu, F. J. (2001). Risk factors for development of human hydatidosis among households raising livestock in Tibetan areas of western Sichuan Province. Chinese Journal of Parasitology and Parasitic Diseases, 19, 289e293. Wang, Q., Vuitton, D. A., Qui, J., Giraudoux, P., Xiao, Y., Schantz, P. M., et al. (2004). Fenced pasture: a possible risk factor for human alveolar echinococcosis in Tibetan pastoralist communities of Sichuan, China. Acta Tropica, 90, 285e293. Wang, Q., Raoul, F., Budke, C., Craig, P. S., Yong-fu, X., Vuitton, D. A., et al. (2010). Grass height and transmission ecology of Echinococcus multilocularis in Tibetan communities, China. Chinese Medical Journal, Peking, 123, 61e67. Zhang, W., Zhang, Z., Wu, W., Shi, B., Li, J., et al. (2014). Epidemiology and control of echinococcosis in central Asia, with particular reference to the People's Republic of China. Acta Tropica. http://dx.doi.org/10.1016/j.actatropica.2014.03.014 (in press).
PY - 2014/12/1
Y1 - 2014/12/1
N2 - Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease remains a key goal of parasitology. Here, random forests are employed to model spatial patterns of the presence of the plateau pika (. Ochotona spp.) small mammal intermediate host for the parasitic tapeworm Echinococcus multilocularis which is responsible for a significant burden of human zoonoses in western China. Landsat ETM+satellite imagery and digital elevation model data were utilized to generate quantified measures of environmental characteristics across a study area in Sichuan Province, China. Land cover maps were generated identifying the distribution of specific land cover types, with landscape metrics employed to describe the spatial organisation of land cover patches. Random forests were used to model spatial patterns of Ochotona spp. presence, enabling the relative importance of the environmental characteristics in relation to Ochotona spp. presence to be ranked. An index of habitat aggregation was identified as the most important variable in influencing Ochotona spp. presence, with area of degraded grassland the most important land cover class variable. 71% of the variance in Ochotona spp. presence was explained, with a 90.98% accuracy rate as determined by 'out-of-bag' error assessment. Identification of the environmental characteristics influencing Ochotona spp. presence enables us to better understand distribution patterns of hosts implicated in the transmission of Em. The predictive mapping of this Em host enables the identification of human populations at increased risk of infection, enabling preventative strategies to be adopted.
AB - Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease remains a key goal of parasitology. Here, random forests are employed to model spatial patterns of the presence of the plateau pika (. Ochotona spp.) small mammal intermediate host for the parasitic tapeworm Echinococcus multilocularis which is responsible for a significant burden of human zoonoses in western China. Landsat ETM+satellite imagery and digital elevation model data were utilized to generate quantified measures of environmental characteristics across a study area in Sichuan Province, China. Land cover maps were generated identifying the distribution of specific land cover types, with landscape metrics employed to describe the spatial organisation of land cover patches. Random forests were used to model spatial patterns of Ochotona spp. presence, enabling the relative importance of the environmental characteristics in relation to Ochotona spp. presence to be ranked. An index of habitat aggregation was identified as the most important variable in influencing Ochotona spp. presence, with area of degraded grassland the most important land cover class variable. 71% of the variance in Ochotona spp. presence was explained, with a 90.98% accuracy rate as determined by 'out-of-bag' error assessment. Identification of the environmental characteristics influencing Ochotona spp. presence enables us to better understand distribution patterns of hosts implicated in the transmission of Em. The predictive mapping of this Em host enables the identification of human populations at increased risk of infection, enabling preventative strategies to be adopted.
KW - Echinococcus multilocularis
KW - Ochotona
KW - Remote sensing
KW - Random forests
KW - Landscape metrics
KW - Classification
UR - http://www.mendeley.com/research/random-forest-approach-predicting-presence-echinococcus-multilocularis-intermediate-host-ochotona-sp
U2 - 10.1016/j.apgeog.2014.09.001
DO - 10.1016/j.apgeog.2014.09.001
M3 - Article (journal)
C2 - 25386042
SN - 0143-6228
VL - 55
SP - 176
EP - 183
JO - Applied Geography
JF - Applied Geography
ER -