Abstract
Cardiovascular diseases are the leading causes on mortality in the world. As a consequence, tools and methods providing useful and applicable insights into their assessment play a crucial role in the prediction and managements of specific heart conditions. In this article, we introduce a method based on multi-class Logistic Regression as a classifier to provide a powerful and accurate insight into cardiac arrhythmia, which is one of the predictors of serious vascular diseases. As suggested by our evaluation, this provides a robust, scalable, and accurate system, which can successfully tackle the challenges posed by the utilisation of big data in the medical sector.
Original language | English |
---|---|
Pages (from-to) | 17-33 |
Journal | International Journal of Distributed Systems and Technologies (IJDST) |
Volume | 8 |
Issue number | 4 |
Early online date | 31 Dec 2018 |
Publication status | E-pub ahead of print - 31 Dec 2018 |