Abstract
An artificial mutant Ala25Ser precursor cystatin C was created to help elucidate the cause of intracellular mis-localisation of the biochemically related variant B (Ala25Thr) precursor cystatin C to the mitochondria. Homozygotes of variant B precursor cystatin C were reported to carry an increased susceptibility to developing the exudative form of AMD. Ala25Ser precursor cystatin C shows a dual distribution to the Golgi apparatus and to the mitochondria. This localisation is thus intermediary between that of wild-type cystatin C (targeted to ER/Golgi compartment) and that of variant B precursor cystatin C. Furthermore, the level of secretion of Ala25Ser cystatin C by RPE cells is intermediary between wild type and variant B cystatin C. Ala25Ser precursor cystatin C thus represents a biochemical intermediate between the wild type and the AMD-associated cystatin C and as such, is a novel tool for the investigation of the mechanism of intracellular mis-localisation of variant B cystatin C. Our findings further support the hypothesis that substitution of the alanine residue in the penultimate position of precursor cystatin C signal sequence with a less hydrophobic amino acid residue, such as threonine (as in variant B cystatin C) or serine is sufficient to impair the intracellular trafficking and processing of the protein.
Original language | English |
---|---|
Pages (from-to) | 1135-9 |
Number of pages | 5 |
Journal | Experimental Eye Research |
Volume | 84 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Jun 2007 |
Keywords
- Cystatin C
- Cystatins/genetics
- Genetic Predisposition to Disease
- Golgi Apparatus/metabolism
- Humans
- Macular Degeneration/genetics
- Mitochondria/metabolism